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Abstract

We provide two new routes for studying the geometry of mapping class groups,
and of colourable hierarchically hyperbolic groups more generally.

Firstly, we show that they are quasimedian quasiisometric to finite-dimensional
CAT(0) cube complexes, which are nonpositively-curved spaces with a particularly
rich structure. Being quasimedian means that much of this additional structure is
coarsely preserved, rather than just the metric.

Secondly, we show that they act geometrically on injective metric spaces. This lets
us use facts from the theory of injective spaces to deduce properties of mapping class
groups, such as semihyperbolicity.
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1 Introduction

It is generally accepted [CM82, Wus69] that the study of infinite discrete groups began in
the 1880s with von Dyck’s introduction of presentations as part of his studies on tesselations
[Dyc82] and with Poincarè’s treatment of Fuchsian groups [Poi82]. By then, Galois’s work
and permutation groups were being increasingly appreciated, Klein’s Erlangen program
was in full swing (indeed, free groups were discovered as examples of Fuchsian groups in
hyperbolic geometry), and Lie’s theory of continuous groups was in the air. However, it was
Poincarè’s introduction of the fundamental group for closed manifolds that really provided
motivation for the subject [Poi95]: Tietze showed that such fundamental groups are always
finitely presented [Tie08], and conversely it can be seen that in fact every finitely presented
group is the fundamental group of a closed 4–manifold.

Much of the early theory was driven by Dehn’s formulation [Deh10, Deh11] of the
word, conjugacy, and isomorphism problems for finitely presented groups [CM82], but
by the middle of the 20thcentury, results such as the examples of Novikov and Boone
[Nov55, Boo59] and the remarkable Adyan–Rabin theorem [Ady57, Rab58] had shown that
even some of the most basic questions about finitely presented groups cannot be answered
in full generality. It was therefore clear than any reasonable theory would need to make
additional assumptions beyond finite presentability.

Success in this direction was soon found by building on some of Dehn’s geometric ideas
[LS77], and the perspective was crystallised by Gromov with his introduction of hyperbolic
groups [Gro87]. The key insight is that if one has an action of a group on a metric space,
then if the orbit maps are “approximate bijections”, one can gain insights on the group
by studying the geometry of the metric space. Gromov considered δ–hyperbolic metric
spaces, citing a definition of Rips [Gro87, p.76], which can be characterised as geodesic
spaces such that every geodesic triangle has a δ–centre: a point that is δ–close to all three
sides. A group is hyperbolic if acts geometrically on some hyperbolic space. This “thin-
triangle” condition behaves as a strong kind of negative curvature, and Gromov was able
to prove a number of strong results on the structure of hyperbolic groups. Even better,
there is a probabilistic sense in which almost all finitely presented groups are hyperbolic
[Gro87, Ol’92].

However, there are many groups of independent interest that are not hyperbolic. In-
deed, the strict negative curvature condition prevents Z2 from being a subgroup of any
hyperbolic group [CDP90, Cor. 10.7.2], [GdlH90, Thm 8.34], which is rather restrictive.
Given the success of hyperbolicity, it is natural to try to weaken its strict negative curvature
to some kind of “nonpositive curvature”: this has been a big industry in recent years.

There are two parts of the definition of hyperbolicity that can be tweaked. The first is
to consider less representative actions on hyperbolic spaces, the acme being the theory of
acylindrical hyperbolicity, which admits a number of distinct formulations [Osi16, DGO17,
Sel97, Bow08, Ham08, BF02, Sis18]. The second, more flexible, approach is to consider
other geometric conditions for the space being acted on. There are several notable instances
of this, such as CAT(0) geometry [Bal95, BH99], relative hyperbolicity [Gro87, Far98,
Bow12, Osi06, DS05], and semihyperbolicity [AB95], among others.

Another parallel approach to understanding groups that was particularly prevalent in
the 80s and 90s is the theory of automaticity, which arose from conversations between
Cannon and Thurston [Can84] and allows for efficient computer manipulations [ECH`92,
BGSS91, GS91a]. The definition involves a geometric part and an algorithmic part, but
one can also consider spaces just satisfying geometric properties of this flavour [Alo92,
Sho90], semihyperbolicity being one such property. The strongest form of automaticity is
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biautomaticity [GS91b], which approximately asks for a single generating set witnessing
both automaticity and (for the geometric part) semihyperbolicity.

1.1 Mapping class groups

One key family of groups one would like to understand by nonpositive curvature techniques
is that of the mapping class groups of (compact, orientable) surfaces. The mapping class
group of a surface S is the group MCGS of isotopy classes of homeomorphisms of S (see
item 3.18 for more discussion). These classically-studied groups already appeared in the
work of Dehn and others a century ago [Deh22], and have been fundamental to the study of
3–manifolds since the geometric insights of Thurston [Thu88]. All but the simplest mapping
class groups have free-abelian “Dehn-twist” subgroups, and thus are not hyperbolic.

1.1 Guiding question. Which forms of nonpositive curvature are satisfied by mapping
class groups?

In general, mapping class groups are neither CAT(0) [KL96] nor relatively hyperbolic
[AAS07, Bow05, KN04, BDM09]. Mosher proved that they are automatic [Mos95]. They
are acylindrically hyperbolic by virtue of their natural (but not “approximately injective”)
actions on the curve graphs, which we describe in the next paragraph. It has recently been
shown that mapping class groups are semihyperbolic (Definition 8.4) [HHP20, DMS20];
the main thrust of this thesis is to give a complete proof of this.

The curve graph of a surface S was introduced by Harvey [Har81]. Denoted CS, it has
a vertex for each isotopy class of simple closed curves on S, and two vertices are joined by
an edge if the corresponding classes admit disjoint representatives. An important break-
through was achieved by Masur–Minsky, who showed that CS is always a hyperbolic space
[MM99]. This has been the starting point for the majority of the subsequent approaches
to the geometry of MCGS, such as the follow-up paper [MM00], in which it is shown that
MCGS has some striking features of “piecewise hyperbolicity”: it can be understood as
being built from (products of) certain hyperbolic subspaces.

1.2 Remark. It should be pointed out that MCGS is sometimes called the extended
mapping class group, with mapping class groups being defined as the index-2 subgroups
MCG` S ă MCGS of orientation-preserving homeomorphisms [FM12]. However, all of
the “piecewise hyperbolicity” is exhibited by MCGS as well, and moreover it is MCGS
that appears in Ivanov’s theorem [Iva97]. Because it is often easier to pass to finite-index
subgroups than finite-index overgroups, MCGS appears to be the more natural object in
this setting.

1.2 Other key players

We have already defined and discussed the importance of hyperbolic spaces. To reiterate
the strength of the negative curvature resulting from asking every geodesic triangle to
have a coarse centre, let us mention the Morse lemma. This states that every quasigeodesic
(Definition 2.3) lies Hausdorff-close to a geodesic with the same endpoints, with the distance
being bounded only by the hyperbolicity and quasigeodesic constants (see [Shc13, GS19]
for optimal explicit constants). Compare this to the situation in, say, the Euclidean plane.

A large subclass of CAT(0) spaces that has attracted a lot of attention recently, in
part thanks to its role in some major advances in 3–manifold theory [Ago13, Wis21], is
that of CAT(0) cube complexes (Definition 2.6). These were introduced to geometric group
theory by Gromov [Gro87], but equivalent objects have a longer history in graph theory
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and computer science [BK47, Win82]. They are simply connected cell complexes built out
of cubes and satisfying a local nonpositive curvature condition that is very robust, in the
sense that it arises naturally in several metric settings [Che00, Lea13, Mie14]. The more
natural metric on a CAT(0) cube complex is the piecewise-`1–metric, and in this light they
can be characterised as having a median structure, whereby every triple of points has a
median: a point µ such that each pair can be joined by a geodesic passing through µ. More
detail is given in Section 2.2.

A more recent and more general notion is that of coarse median spaces (Definition 2.11),
introduced by Bowditch [Bow13]. These have a coarse median map that, on finite subsets,
behaves like the median on a CAT(0) cube complex, up to some bounded error. Mapping
class groups have such coarse median maps [BM11], and indeed this was largely the mo-
tivation for the introduction of coarse median spaces. Coarse median spaces are covered
more fully in Section 2.3. The natural structure-preserving maps between coarse median
spaces are known as quasimedian maps.

The “piecewise hyperbolicity” observed in mapping class groups by Masur–Minsky (and
developed further in [Beh06, BKMM12]) has since been found in other groups, including
all known groups acting geometrically on CAT(0) cube complexes [BHS17b, HS20] and
most 3–manifold groups [BHS19, HRSS22]. The structure was formalised as hierarchical
hyperbolicity (Section 3.1) by Behrstock–Hagen–Sisto [BHS17b, BHS19]. As it is rather
unwieldy, the definition is necessarily quite complicated—although the technicalities of
the structure are not a point of focus for us, hierarchical hyperbolicity does provide the
backdrop for the arguments of Section 3, which is the bottleneck in generality for the thesis.
See Section 1.4 for more discussion of the generality of the arguments herein.

Whilst semihyperbolicity is our end goal, it will not play any real role in the main
arguments, and it only reappears in Section 8. As a matter of fact, my opinion is that
semihyperbolicity is really just a curiosity, and I consider the results on quasicubicality
(Definition 4.13) and coarse injectivity (Definition 6.16), as well as the general medians-
first perspective, to be more interesting and useful. These will be discussed in the next
subsection.

There is one more family of metric spaces that have not been mentioned yet but which
play a crucial role: injective metric spaces (Definition 7.1). These have been studied
since the 50s [AP56], but most of the work concerning them has focused on finite metric
spaces. Whilst they did not make an appearance in geometric group theory till work of
Lang [Lan13], they are becoming increasingly popular [CCG`20, HO21, Hae21]. In many
respects, injective spaces behave like “an `8 version of CAT(0) spaces”; see Section 7.

1.3 Main results and outline

Section 2 covers background that will be used throughout the thesis. It also contains a
couple of important facts about coarse medians (Definition 2.11), most notably Proposi-
tion 2.13, which comes from [HP19]. It states that quasimedian quasiisometric embeddings
(Definition 2.12) in CAT(0) cube complexes always give rise to quasimedian quasiisometries
to CAT(0) cube complexes. This proposition is the mechanism by which we bring together
what could be considered the first half of the thesis, namely Theorem 4.20, discussed below.
The idea (essentially due to Bowditch) is that “any subspace of a CAT(0) cube complex
that is approximately closed under taking medians is approximately a subspace closed
under taking medians.” This means that the image of any quasimedian quasiisometric
embedding is Hausdorff-close to a CAT(0) subcomplex.

Section 3 is based on joint work with Mark Hagen [HP19]. Its purpose is to show
that every colourable hierarchically hyperbolic group (HHG) admits a quasimedian quasi-
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isometric embedding in a finite product of hyperbolic spaces; this is Theorem 3.27. The
hyperbolic spaces in question are built via the Bestvina–Bromberg–Fujiwara construction,
as in [BBF15] (see Section 3.2), and the embedding is (after passing to a finite-index sub-
group) just an orbit map. The proof that it is a quasiisometric embedding uses the distance
formula, similarly to [BBF15]. The main difficulty is to show that it is quasimedian. For
this, we show that hierarchy paths get sent to unparametrised quasigeodesics in each fac-
tor, by decomposing them according to when they make progress in relevant domains. We
then consider a hierarchy path triangle passing through the median, whose image is an
unparametrised quasigeodesic triangle, and hence close to the hyperbolic median by the
Morse lemma.

In Section 4, which is based on part of [Pet21], we consider a construction of Buyalo–
Dranishnikov–Schroeder for embedding hyperbolic spaces in finite products of trees. The
main technical result is Proposition 4.12, which states that the embedding of [BDS07] is
quasimedian whenever it exists. This is done by a careful analysis of the construction,
and by using certain facts from Section 2.3 showing that medians in hyperbolic spaces are
fairly rigid. We can then apply Proposition 2.13. As a consequence of this and work of
Mackay–Sisto [MS13] and Wright [Wri12], we obtain:

4.19 Theorem. If X is a hyperbolic space, then X is quasimedian quasiisometric to a
finite-dimensional CAT(0) cube complex if and only if X has finite asymptotic dimension.

This generalises a result of Haglund–Wise [HW12, Thm 1.8]. Combining Theorem 4.19
with Theorem 3.27 and again using Proposition 2.13 yields:

4.20 Theorem. Every colourable hierarchically hyperbolic group is quasimedian quasiiso-
metric to a finite-dimensional CAT(0) cube complex.

This applies in particular to mapping class groups, and in Section 4.4, we observe that
the cube complexes produced must have some interesting properties. Theorem 4.20 is the
main statement that we carry forward to the remaining sections. To tighten things up,
we say that a coarse median space is quasicubical if it is quasimedian quasiisometric to a
finite-dimensional CAT(0) cube complex.

In Section 5 we derive a “coarse Helly” property for median-quasiconvex subsets of
quasicubical coarse median spaces (Corollary 5.6), which implies that median-quasiconvex
subgroups have bounded packing. It is straightforward from the Helly property for convex
subcomplexes of CAT(0) cube complexes, but it is important for the conclusion of Section 6.
A related statement appears in [HHP20].

Section 6 is based on joint work with Thomas Haettel and Nima Hoda [HHP20]. In it,
we modify an idea of Bowditch [Bow20b] to construct a new metric σ on coarse median
spaces. This metric is analogous to the piecewise-`8–metric on a CAT(0) cube complex,
and the definition can be thought of as mimicking the characterisation of that as the
length of the longest chain of hyperplanes separating two points. The section is devoted to
showing that σ has certain nice properties when the coarse median space is quasicubical
(and a couple of other small assumptions hold), the culmination being Theorem 6.20.

6.20 Theorem. If pX,µ, dq is a locally finite, quasicubical, roughly geodesic coarse median
space, then it is quasiisometric to the coarsely injective space pX,σq. Moreover, median-
preserving isometries of pX,µ, dq are isometries of pX,σq.

In the case where the space is a colourable HHG, the upshot of this is that it acts
geometrically on a coarsely injective space. The most difficult part is the coarse injectivity.
We break it down into two components. Firstly, we show that balls in pX,σq are uniformly
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median-quasiconvex (Lemma 6.18). Secondly, we show that σ is weakly roughly geodesic
(Proposition 6.15), which implies that if one has two metric balls such that the sum of
the radii is greater than the distance between the centres, then they actually come close
to each other. A detailed discussion of the argument for this is given in item 6.11. These
two facts allow us to apply Corollary 5.6 to any family of balls, verifying coarse injectivity,
Definition 6.16.

This is followed by Section 7, which considers injective metric spaces. A simple obser-
vation unifies Lang’s construction of a bicombing [Lan13] and the barycentres obtained by
Descombes [Des16]. We discuss a number of metric consequences of these constructions.
Whilst the results of this section are not new in themselves, the unified presentation is.

Finally, in Section 8, we draw together the threads of the previous sections. As observed
by Chalopin–Chepoi–Genevois–Hirai–Osajda [CCG`20], any group acting geometrically on
a coarsely injective space also acts geometrically on an injective space. By Theorems 6.20
and 4.20, this includes all colourable HHGs.

8.1 Theorem. Every colourable HHG acts geometrically on some coarsely injective space.

Using this, we obtain properties of colourable HHGs from the facts about injective
spaces in Section 7; see Corollary 8.2. Semihyperbolicity is one such property. Since
mapping class groups are colourable HHGs, this applies to them.

1.4 Discussion of generality

The various sections of this thesis have been kept as self-contained as possible, often with
only one key result reappearing later. For this reason, their logical settings are not all the
same. To summarise:

• Section 3 ([HP19]) deals with colourable HHGs. The main statement is Theorem 3.27.
• The majority of Section 4 ([Pet21]) is about bounded metric spaces. Its results are

combined with Theorem 3.27 in Section 4.3 to obtain Theorem 4.20, which says that
colourable HHGs are quasicubical.

• Section 5 concerns quasicubical coarse median spaces. It produces Corollary 5.6.
• Section 6 ([HHP20]) constructs a new metric for quasicubical coarse median spaces; it

is necessary to assume local finiteness and rough geodesicity in certain places. Corol-
lary 5.6 is used to prove Theorem 6.20, which states properties of the new metric.

• Section 7 treats injective metric spaces, ending with Theorem 7.28.
• Section 8 combines the results of the previous sections. Theorem 4.20 lets us apply

Theorem 6.20 to colourable HHGs, yielding Theorem 8.1. We obtain consequences
from Theorem 7.28.

Semihyperbolicity of mapping class groups was proved simultaneously and indepen-
dently in [HHP20] and [DMS20]. The arguments are rather different. In [DMS20], it is
deduced from a strong stability result for hulls of finite subsets of colourable HHGs. The
arguments of this thesis are the same as in [HHP20], except we prove and use quasicu-
bicality for colourable HHGs, whereas [HHP20] uses the property of having quasicubical
intervals, which holds for all HHSs [BHS21, Thm 2.1], not just those that are colourable.

There are a few reasons why I have chosen not to work in the setting of coarse median
spaces with quasicubical intervals in Section 6. Firstly, all the main known examples of
HHGs are colourable, so the loss in generality does not seem to be substantial. Secondly,
assuming quasicubicality makes a few arguments easier to conceptualise. Thirdly, I wanted
to foreground the role of the coarse median. Finally, I wanted to minimise inertia: note
that, except for a few basic facts about CAT(0) cube complexes, no external input is
needed for the proof of Theorem 6.20. By comparison, the fact that mapping class groups
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have quasicubical intervals is a theorem of Behrstock–Hagen–Sisto [BHS21, Thm 2.1] (also
see [Bow18, Thm 1.3]); it is proved by applying Sageev’s construction to a well-chosen
collection of walls. (The main result of [DMS20] strengthens it.)
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2 Preliminaries

This section contains background material that underpins the thesis.

2.1 Metric notions and notations

For a point a and a subset A in a metric space pX, dq, we write BXpa, rq for the open r–ball
centred on a, and NXpA, rq for the open r–neighbourhood about A. We write diamA “
suptdpa, a1q : a, a1 P Au. If A,B Ă X, then dpA,Bq “ inftdpa, bq : a P A, b P Bu.

In geometric group theory, we are interested in the large-scale geometry of metric
spaces. From this viewpoint, the spaces Z and R ˆ r0, ns, for example, have “the same
shape”, and so should be considered equivalent. This is best captured by quasiisometries,
and for groups by proper cobounded actions, which are the geometric actions alluded to
in the introduction.

2.1 Definition (Quasiisometry). For λ ě 1, a map f : X Ñ Y of metric spaces is a
λ–quasiisometric embedding if

1

λ
dXpx, yq ´ λ ď dY pfpxq, fpyqq ď λ dXpx, yq ` λ

for all x, y P X. It is r–coarsely onto if fpXq is r–coarsely dense, in the sense that Y “

NY pfpXq, rq. The map f is a λ–quasiisometry if it is a λ–coarsely onto λ–quasiisometric
embedding.

2.2 Definition (Proper, cobounded). An (isometric) action of a group G on a metric
space is proper if for every ball B, only finitely many G–translates of B intersect B. An
action is cobounded if some orbit is coarsely dense.

Quasiisometric embeddings are coarsely nonsingular versions of coarsely Lipschitz maps.
We say that f : X Ñ Y is pλ1, λ2q–coarsely Lipschitz if dY pfpxq, fpx1qq ď λ1 dXpx, x

1q`λ2

for all x, x1 P X.
In the same way that geodesics are fundamental in the fine geometry of metric spaces,

quasigeodesics are central to large-scale geometry.

2.3 Definition (Quasigeodesic). A λ–quasigeodesic in a metric spaceX is a λ–quasiisometric
embedding γ : I Ñ X, where I Ă R is a closed interval. An unparametrised λ–quasigeodesic
is a subset of X that is the image of some λ–quasigeodesic.

One more notion that will appear in Section 3 and be used in Section 4 is that of
asymptotic dimension. Asymptotic dimension was introduced by Gromov in [Gro93] as a
group invariant; a nice survey can be found in [BD08]. We shall never actually engage
with what asymptotic dimension is—it will be a technical tool for us only. A definition
has been included for the sake of completeness.

2.4 Definition (Asymptotic dimension). A family U of subsets of X is r–disjoint if
dpU,U 1q ą r for all U,U 1 P U , and is uniformly bounded if there is some R such that
diamU ď R for every U P U . We say that X has asymptotic dimension at most n, writing
asdimX ď n, if for all r there are r–disjoint, uniformly bounded families U0, . . . ,Un such
that

Ťn
i“0 Ui is a cover of X.

7



2.2 CAT(0) cube complexes

Here we give a brief summary of some of the now-extensive theory of CAT(0) cube com-
plexes; more thorough discussions can be found in [Hag12, Wis21], for example.

The following is a classical notion in graph theory [BK47, Ava61, BH83].

2.5 Definition (Median graph). A graph is median if for any vertices v1, v2, v3 there is a
unique vertex µ such that dpvi, µq ` dpµ, vjq “ dpvi, vjq for each i ‰ j.

Note that the ternary operation µ is symmetric and is 1–Lipschitz in each of its three
coordinates.

The following is not the standard definition of CAT(0) cube complexes, but it is equiv-
alent by [Che00, Thm 6.1].

2.6 Definition (CAT(0) cube complex). A CAT(0) cube complex is the space obtained
from a median graph by attaching, in the obvious way, a unique cube r0, 1sn to every
subgraph isometric to a product of n edges, for every n ě 2.

2.7 Metrics. There are three commonly considered metrics on CAT(0) cube complexes:
the piecewise-`p–metrics dp, for p P t1, 2,8u. The metric d2 is also called the CAT(0)
metric, for if Q is a CAT(0) cube complex then pQ, d2q is a CAT(0) space [Lea13]. The
metric d8 is also natural because a cube complex Q is a CAT(0) cube complex if and
only if pQ, d8q is an injective space (Definition 7.1) [Mie14]. It is the metric d1 that best
captures the combinatorics of a CAT(0) cube complex, though, for in this metric it is a
median space and its 1–skeleton is isometrically embedded. One can also consider dp for
p P p1,8q, which is always Busemann-convex [HHP].

These metrics are bilipschitz to one another for finite-dimensional CAT(0) cube com-
plexes. Indeed, if dimQ ă 8 and p ă q, then

d8px, yq ď dqpx, yq ď dppx, yq ď dimQ d8px, yq.

Unless otherwise stated, all CAT(0) cube complexes will be considered with the metric d1.

Formally, everything that we do with CAT(0) cube complexes could be done in the
language of median graphs. In fact, as we are primarily concerned with medians, we only
need the vertices, so we shall frequently identify a CAT(0) cube complex with its 0–skeleton
without comment. Similarly, we shall count the vertex set of a graph as being a geodesic
space. The chief advantage of the cube terminology is that it makes certain concepts more
intuitive. For example, the dimension of a CAT(0) cube complex is the supremal dimension
of its cubes. Another example is the concept of hyperplanes.

2.8 Definition (Hyperplane). A midcube is obtained from a cube by restricting one factor
to t1

2u. Say that two midcubes in a CAT(0) cube complex are equivalent if they meet in a
face, and extend the relation transitively. A hyperplane is an equivalence class of midcubes.
See Figure 1.

The use of hyperplanes in studying CAT(0) cube complexes was pioneered by Sageev
[Sag95], but the equivalent Djoković relation on edges of median graphs was known much
earlier [Djo73]. Again, cubes make things more intuitive.

Each hyperplane h cuts the CAT(0) cube complex Q into two halfspaces h´, h`, the
components of Qrh. We say that h separates the points of h` from those of h´. Halfspaces
are convex in the sense that µpx, y, y1q P h` whenever y, y1 P h`, and similarly for h´.
Every subcomplex Y of a CAT(0) cube complex Q is contained in a unique smallest convex
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Figure 1: An example of a hyperplane in a CAT(0) cube complex.

subcomplex of Q, denoted hullY . In the case that Y “ tx, yu consists of only two points,
hullY is called the interval from x to y. In this case we have

hullY “ rx, ys “ tz P Q : z lies on a geodesic from x to yu
“ tµpx, y, zq : z P Qu.

2.9 Definition (Chain). A chain of hyperplanes is a sequence phiqiPIXZ, for some inter-
val I, such that hi separates hi´1 from hi`1 for all i.

A subset Y of a metric space X is said to be r–coarsely connected if for any y, y1 P Y
there is a sequence y “ y0, y1, . . . , yn “ y1 in Y with dpyi´1, yiq ď r for all i. The following
proposition is a combination of Proposition 2.8 and Lemma 2.11 from [HP19], the former
of which is based on [Bow18, Prop. 4.1] (or [Fio21, Prop. 4.1]).

2.10 Proposition. For all r, ν, and m, there exists k such that the following holds.
Suppose that Y is an r–coarsely connected subcomplex of a ν–dimensional CAT(0) cube
complex Q, and that Y has the property that dpµpy1, y2, y3q, Y q ď m for all y1, y2, y3 P Y .
There is an isometrically embedded (in the metric d1, see item 2.7) CAT(0) subcomplex
Z Ă Q with Hausdorff-distance dHauspY,Zq ď k.

Proof. Decompose Y as a disjoint union of maximal 1–coarsely connected subsets Yi. For
each i, let Si be the set of all j with dpYi, Yjq ď r. Let Y 1 be the 1–coarsely connected
subcomplex obtained from Y by adding, for each i, a geodesic of length at most r from Yi
to Yj for each j P Si. Clearly dHauspY, Y

1q ď r. Since µ is 1–Lipschitz in each factor, Y 1

has the property that dpµpy11, y
1
2, y

1
3q, Y

1q ď m ` 3r for all y11, y12, y13 P Y 1. Thus, [Bow18,
Prop. 4.1] provides a 1–coarsely connected induced median subgraph Z 1 Ă Q that is at
bounded Hausdorff distance from Y 1.

It remains to show that Z 1 is isometrically embedded in Q, for then we can take Z to be
the CAT(0) cube complex with 1–skeleton Z 1. We show by induction that any two vertices
z, z1 P Z 1 can be joined by a geodesic of Q contained in Z 1. This is clear if dpz, z1q “ 1.
If dpz, z1q “ n ą 1, then let γ “ pz “ z0, z1, . . . , zm “ z1q be an edge path in Z 1 from z
to z1. The edge path γ1 “ µpz, z1, γq is a subset of Z 1 X rz, z1s. There exists i such that
dpγ1piq, zq “ n´1. As γ1piq P rz, z1s, it is adjacent to z1 in Q, hence in the induced subgraph
Z 1. By induction, there is a Q–geodesic from z to z1 via γ1piq.

2.3 Coarse median spaces

Coarse median spaces were introduced by Bowditch [Bow13], and the class includes many
examples of interest, such as mapping class groups, hyperbolic spaces, Teichmüller space
with either of the usual metrics, CAT(0) cube complexes, and hierarchically hyperbolic
spaces [Bow13, NWZ19, Bow16a, Bow20a, BHS19]. The motivation came from a construc-
tion of Behrstock–Minsky for mapping class groups [BM11] (see item 3.18), whose proof
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of the rapid decay property can be generalised to groups that are coarse median spaces
[Bow14a].

2.11 Definition (Coarse median space). A metric space pX, dq is a coarse median space
if there is a map µ : X3 Ñ X (which we refer to as the coarse median) and a function
κ : N0 Ñ R such that the following conditions hold.

• µ is symmetric, and µpx, x, yq “ x for all x, y P X.
• For any x, x1, y, y1, z, z1 P X we have

dpµpx, y, zq, µpx1, y1, z1qq ď κp0qp1` dpx, x1q ` dpy, y1q ` dpz, z1qq.

• For all n P N, if A Ă X has cardinality at most n, then there is a finite CAT(0) cube
complex Q with maps f : AÑ Q and f̄ : QÑ X such that

´ d
`

f̄µpv1, v2, v3q, µpf̄pv1q, f̄pv2q, f̄pv3qq
˘

ď κpnq for all v1, v2, v3 P Q;

´ dpa, f̄fpaqq ď κpnq for all a P A.

In Section 6, we shall write κp0q “ κ0 to improve readability, and assume that κ0 ě 1
for convenience. We shall also write µpx, y, zq “ µxyz when expedient.

The natural maps between coarse median spaces are quasimedian maps.

2.12 Definition (Quasimedian). A map f : X Ñ Y of coarse median spaces is λ–
quasimedian if

dY
`

fpµxyzq, µpfx, fy, fzq
˘

ď λ

for all x, y, z P X.

The following proposition from [HP19] is a pivotal tool in this thesis; it will be used
at a key point in Section 4.3. It shows that one can upgrade quasimedian quasiisometric
embeddings in CAT(0) cube complexes to quasimedian quasiisometries.

2.13 Proposition. If a coarsely connected coarse median space X admits a quasimedian
quasiisometric embedding f in a finite-dimensional CAT(0) cube complex Q, then X is
quasimedian quasiisometric to a CAT(0) cube complex.

Proof. The image fpXq is coarsely connected because f is coarsely Lipschitz, and µpfx1, fx2, fx3q

is uniformly close to fpXq for any x1, x2, x3 P X because f is quasimedian. The result
follows by applying Proposition 2.10 to fpXq.

Let us finish this section with a few useful facts about coarse medians and hyperbolicity.

2.14 Proposition ([NWZ19, Thm 4.2]). If X is a δ–hyperbolic space, then any coarse
median on X is a bounded perturbation of a map sending each triple to a choice of δ–
centre.

2.15 Lemma. If X and Y are hyperbolic spaces, then any map f : X Ñ Y that sends
geodesics to uniform unparametrised quasigeodesics is quasimedian. In particular, any
quasiisometric embedding of hyperbolic spaces is quasimedian.

Proof. According to Proposition 2.14, there is only a bounded ambiguity in the coarse
median operations. Let x1, x2, x3 P X, and for each pair pi, jq let γij be a uniform
quasigeodesic from xi to xj that passes through m “ µXpx1, x2, x3q. The image fγij
is a uniform unparametrised quasigeodesic, so lies at bounded Hausdorff-distance from a
geodesic with the same endpoints by the Morse lemma. Thus fpmq is uniformly close to
µY pfx1, fx2, fx3q.
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Whilst it is the goal of nonpositive curvature to generalise hyperbolicity, there is some
ambiguity as to what that should mean: hyperbolic spaces have many nice properties,
and it is not clear exactly which ones should be considered indispensable. One can view
Lemma 2.15 as saying that, at least in the world of coarse median spaces, it is quasimedian
quasiisometries that should be considered as the fundamental maps, not mere quasiisome-
tries, as it shows that there is no loss in adding the adjective in the hyperbolic setting.

The following is a kind of converse to Lemma 2.15.

2.16 Lemma. Let X be a δ–hyperbolic space. If γ : I Ñ X is λ–quasimedian and has
r–coarsely connected image, then γ is an unparametrised 2pr ` δ ` λ` 1q–quasigeodesic.

Proof. Let C “ r ` 2δ ` 2λ ` 1. After translating R we may assume that 0 P I. Let
t0 “ 0. For i ą 0, given ti´1, let ti ą ti´1 be minimal such that dpγpti´1q, γptiqq ě C. For
i ă 0, given ti`1, let ti ă ti`1 be maximal such that dpγptiq, γpti`1qq ě C. We claim that
i ÞÑ γptiq is a quasigeodesic. Firstly, coarse connectivity shows that it is pC ` rq–coarsely
Lipschitz. In the other direction, let i ă k and let α be a geodesic from γptiq to γptkq. By
the triangle inequality, we have

dpγptiq, γptkqq ě
k´1
ÿ

j“i

`

dpγptjq, γptj`1qq ´ dpγptjq, αq ´ dpγptj`1q, αq
˘

ě

k´1
ÿ

j“i

`

C ´ 2pdpµγptiq,γptjq,γptkq, αq ` λq
˘

ě

k´1
ÿ

j“i

`

C ´ 2pδ ` λq
˘

ě k ´ i.

Let X and Y be metric spaces equipped with n–ary operations pX : Xn Ñ X and
pY : Y n Ñ Y . We say that a map f : X Ñ Y is a coarse morphism with respect to pX
and pY if there is a constant λ such that dY

`

fpXpx1, . . . , xnq, pY pfx1, . . . , fxnq
˘

ď λ for
every px1, . . . , xnq P X

n.

2.17 Lemma. Let X and Y be hyperbolic spaces. If a coarsely Lipschitz map f : X Ñ Y
is a coarse morphism with respect to the binary operations µXp¨, ¨, x0q : X2 Ñ X and
µY p¨, ¨, fpx0qq : Y 2 Ñ Y for some x0 P X, then f is quasimedian.

Proof. Let x1, x2 P X, and let γ be a geodesic from x1 to x2. Let γi be a uniform
quasigeodesic from x0 to xi that passes through m “ µXpx1, x2, x0q. Let γ1i Ă γi be the
subsegment from m to xi. Then γ uniformly fellow-travels with the uniform quasigeodesic
γ11 Y γ

1
2.

The coarse morphism property of f tells us that the γi get mapped to uniform un-
parametrised quasigeodesics, and moreover that fpmq is uniformly close to µY pfx1, fx2, fx0q.
In particular, the coarse intersection of fγ11 with fγ12 is uniformly bounded. This shows
that fγ11 Y fγ12 is a uniform unparametrised quasigeodesic. Since γ fellow-travels with
γ11 Y γ

1
2, this implies that fγ is a uniform unparametrised quasigeodesic.

We have shown that f sends geodesics to uniform unparametrised quasigeodesics, so
we are done by Lemma 2.15.
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3 Colourable HHGs and projection complexes

This section is based on joint work with Mark Hagen [HP19]. The main result, Theo-
rem 3.27, is that colourable hierarchically hyperbolic groups admit quasimedian quasiiso-
metric embeddings in finite products of hyperbolic spaces.

The section is subdivided as follows. Section 3.1 covers necessary background and
basic results on hierarchical hyperbolicity. Section 3.2 describes the Bestvina–Bromberg–
Fujiwara construction, which is used to construct the relevant hyperbolic spaces. Sec-
tion 3.3 contains the main result and its proof.

3.1 Hierarchical hyperbolicity

The central definitions of hierarchical hyperbolicity are rather technical, and in any case
are not the best way to understand the area.

The concept came about because it was observed that certain disparate spaces and
groups had a common structure that could be used for studying them [MM00, Hag14,
KK14]. As many arguments about these examples only used certain key facts about this
structure, it was propitious to abstract it as a framework that could be studied in its
own right, especially since some natural arguments take place within this framework but
outside the examples themselves. This led to a first definition of hierarchical hyperbolicity
[BHS17b] in terms of those key facts.

Although this definition was well suited to proving facts about known examples, it
suffered from the problem that it was difficult to verify in practice. To remedy this, the now-
standard definition was introduced in [BHS19]; it consists of a list of individually simple
properties that together imply the key facts. Since the actual geometry the definition is
trying to capture already has several moving parts, and since these parts have been broken
down into multiple pieces, the definition is necessarily quite complicated.

One should therefore take a dualistic approach. If one aims to prove that a space is
hierarchically hyperbolic, then one should work in terms of the definition from [BHS19]
(or use the sufficient conditions in [BHMS20]). However, if one is interested in working
with spaces that are known to be hierarchically hyperbolic, then it is better to approach
things from the plateau of the key facts of nature, rather than the thicket of the definition
of artifice.

The reader can therefore safely skip the full definition of hierarchically hyperbolic
spaces, which should really be viewed as a set of criteria to imply the distance formula
below. It is quoted from [BHS19, Def. 1.1] for completeness. Discussion of the important
points appears afterwards.

3.1 The definition from [BHS19]. “The q–quasigeodesic space pX, dXq is a hierarchi-
cally hyperbolic space if there exists δ ě 0, an index set S, and a set tCW : W P Su of
δ–hyperbolic spaces pCU, dU q, such that the following conditions are satisfied:

1. (Projections.) There is a set tπW : X Ñ 2CW | W P Su of projections sending
points in X to sets of diameter bounded by some ξ ě 0 in the various CW P S.
Moreover, there exists K so that for all W P S, the coarse map πW is pK,Kq–
coarsely Lipschitz and πW pXq is K–quasiconvex in CW .

2. (Nesting.) S is equipped with a partial order Ă, and either S “ H or S contains a
unique Ă–maximal element; when V Ă W , we say V is nested in W . (We emphasize
thatW Ă W for allW P S.) For eachW P S, we denote bySW the set of V P S such
that V Ă W . Moreover, for all V,W P S with V Ĺ W there is a specified subset
ρVW Ă CW with diamCW pρ

V
W q ď ξ. There is also a projection ρWV : CW Ñ 2CV .
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(The similarity in notation is justified by viewing ρVW as a coarsely constant map
CV Ñ 2CW .)

3. (Orthogonality.) S has a symmetric and anti-reflexive relation called orthogonal-
ity : we write V KW when V,W are orthogonal. Also, whenever V Ă W and WKU ,
we require that V KU . We require that for each T P S and each U P ST for which
tV P ST | V KUu ‰ H, there exists W P ST ´ tT u, so that whenever V KU and
V Ă T , we have V Ă W . Finally, if V KW , then V,W are not Ă–comparable.

4. (Transversality and consistency.) If V,W P S are not orthogonal and neither is
nested in the other, then we say V,W are transverse, denoted V&W . There exists
κ0 ě 0 such that if V&W , then there are sets ρVW Ď CW and ρWV Ď CV each of
diameter at most ξ and satisfying:

min
 

dW pπW pxq, ρ
V
W q, dV pπV pxq, ρ

W
V q

(

ď κ0

for all x P X.
For V,W P S satisfying V Ă W and for all x P X, we have:

min
 

dW pπW pxq, ρ
V
W q,diamCV pπV pxq Y ρ

W
V pπW pxqqq

(

ď κ0.

The preceding two inequalities are the consistency inequalities for points in X.
Finally, if U Ă V , then dW pρ

U
W , ρ

V
W q ď κ0 whenever W P S satisfies either V Ĺ W

or V&W and WMU .
5. (Finite complexity.) There exists n ě 0, the complexity of X (with respect to S),

so that any set of pairwise–Ă–comparable elements has cardinality at most n.
6. (Large links.) There exist λ ě 1 and E ě maxtξ, κ0u such that the following holds.

Let W P S and let x, x1 P X. Let N “ λ dW pπW pxq, πW px
1qq ` λ. Then there exists

tTiui“1,...,tNu Ď SW ´tW u such that for all T P SW ´tW u, either T P STi for some
i, or dT pπT pxq, πT px1qq ă E. Also, dW pπW pxq, ρTiW q ď N for each i.

7. (Bounded geodesic image.) There exists E ą 0 such that for all W P S, all
V P SW ´ tW u, and all geodesics γ of CW , either diamCV pρ

W
V pγqq ď E or γ X

NEpρ
V
W q ‰ H.

8. (Partial Realization.) There exists a constant α with the following property. Let
tVju be a family of pairwise orthogonal elements of S, and let pj P πVj pXq Ď CVj .
Then there exists x P X so that:

• dVj px, pjq ď α for all j,
• for each j and each V P S with Vj Ă V , we have dV px, ρ

Vj
V q ď α, and

• if W&Vj for some j, then dW px, ρ
Vj
W q ď α.

9. (Uniqueness.) For each κ ě 0, there exists θu “ θupκq such that if x, y P X and
dXpx, yq ě θu, then there exists V P S such that dV px, yq ě κ.”

3.2. A hierarchically hyperbolic space (HHS) is generally written as a pair pX,Sq, where
X is a metric space and S is a set, though it comes with more associated information,
including a constant E such that the following hold.

• For each domain U P S, there is a geodesic hyperbolic space CU and an pE,Eq–
coarsely Lipschitz, E–coarsely onto map πU : X Ñ CU .

• S has three pairwise mutually exclusive relations: nesting, Ă, a partial order; or-
thogonality, K, symmetric; and transversality, &, their (symmetric) complement.

• If U&V or U Ĺ V , then there is a specified point ρUV P CV .
• If U&V , then any x P X with dCU pπU pxq, ρ

V
U q ą E has dCV pπV pxq, ρUV q ď E. This is

known as consistency.
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3.3 Remark. In the definition of [BHS19], the maps πU are only required to be quasicon-
vex, and the points ρUV are allowed to be bounded sets. One can pass to the version stated
here by increasing E.

We shall follow the convention of compressing notation by writing dU px, ¨q for dCU pπU pxq, ¨q
when x P X and U P S.

Let us now state two of the key facts that are part of the definition in [BHS17b] but
are consequences of the definition in [BHS19]. For numbers r, s, let ttruus be equal to r if
r ě s and 0 otherwise.

3.4 Distance formula. Suppose that pX,Sq is an HHS. There is a constant s0 ě 100E
such that for any s ě s0 there exists As such that

1

As

ÿ

UPS

ttdU px, yquus ´As ď dXpx, yq ď As
ÿ

UPS

ttdU px, yquus `As

holds for every x, y P X.

3.5 Definition (Hierarchy path). A D–hierarchy path in X is a D–quasigeodesic γ Ă X
such that πUγ is an unparametrised D–quasigeodesic for every U P S.

3.6 Ubiquity of hierarchy paths. Suppose that pX,Sq is an HHS. There is a constant
D0 such that every pair of points in X is joined by a D0–hierarchy path.

There are a few additional pieces of structure that we shall need, the most fundamental
of which is a coarse median. This could also be viewed as a defining fact, and indeed, in
[Bow18], Bowditch uses a formulation that is similar to hierarchical hyperbolicity and
includes the property of being a coarse median space as an axiom.

3.7 Proposition ([BHS19, Thm 7.3],[Bow13, Prop. 10.1]). If pX,Sq is an HHS, then there
is a map µ : X3 Ñ X making pX,µq a coarse median space. Moreover, there is a coarsely
unique choice of µ such that the πU are uniformly quasimedian. That is, πU pµpx, y, zqq is
uniformly close to µCU pπUx, πUy, πUzq for any x, y, z P X and any U P S.

We fix a choice of µ such that the πU are quasimedian. The following simple conse-
quence of this choice of µ appears as the base case of [RST18, Prop. 5.6], and can also
be deduced from [BHS21, Lem. 1.37, Thm 2.1], though the latter result involves more
machinery.

3.8 Lemma. Let pX,Sq be an HHS. There is a constant D1 such that for any x1, x2, x3 P X
there are D1–hierarchy paths γij from xi to xj passing through µpx1, x2, x3q.

Proof. Let γi be a D0–hierarchy path from xi to m “ µpx1, x2, x3q, and let γij be the
concatenation of γi with γj (reversed). Because πU pmq is uniformly close to a geodesic
rπU pxiq, πU pxjqs, we have that πUγij is a uniform unparametrised quasigeodesic for ev-
ery U P S. To show that γij is itself a uniform quasigeodesic, one applies the distance
formula with a sufficiently large constant s ě 2s0, to find that dpγipt1q, γjpt2qq is linearly
approximated by dpγipt1q,mq ` dpm, γpt2qq.

3.9 Remark. There is an alternative definition of hierarchy paths that is more in keeping
with the main themes of this thesis. Namely, it follows from Lemmas 2.15 and 2.16 and
the coarse uniqueness of µ that a quasiisometric embedding I Ñ X is a hierarchy path
if and only if it is quasimedian. (Note that both the coarse median and the status of
being a hierarchy path depend on the choice of HHS structure.) More generally, those
lemmas show that a map I Ñ X is an unparametrised hierarchy path if and only if it is
quasimedian. We shall not make use of this version viewpoint.
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As well as a hyperbolic space, there is a kind of maximal subspace of X associated
with each U P S, called the product region of U . Although these can (coarsely) be given
a product structure [BHS19, §5.2], we shall only need the metric structure.

3.10 Definition (Product region). The product region of U P S is the set PU “ tx P X :
dpx, ρUV q ď E whenever U&V or U Ĺ V u.

3.11. As can be seen from the finiteness of the right-hand side of the distance formula, for
any x, y P X, there can be only finitely many U P S with dU px, yq ě s0. For r ě 100E,
we write Relrpx, yq for the set of domains U P S that are r–relevant to px, yq, in the sense
that dU px, yq ě r. There is a partial order on Relrpx, yq that restricts to a total order on
every pairwise transverse subset. Namely, if U, V P Relrpx, yq are transverse, then U ă V
if dV px, ρUV q ď E [BHS19, Prop. 2.8]. In this case, consistency says that dU py, ρVU q ď E.

3.12 Definition (Automorphism). Let C ě 0. A C–HHS-automorphism is an isometry
φ : X Ñ X that preserves the HHS structure as follows.

• There is an induced bijection φS : SÑ S that preserves the relations Ă,K,&.
• There is an isometry φU : CU Ñ CpφSUq for each U P S.
• For every U P S, the maps φUπU and πφSUφ commute up to an error of at most C.
• d

`

φU pρ
V
U q, ρ

φSV
φSU

˘

ď C whenever V&U or V Ĺ U .

We shall abuse notation slightly by writing π for both φS and φU . Note that the set
of C–HHS-automorphisms need not form a group. Nonetheless, we say that a group G
acts on pX,Sq by HHS automorphisms if it acts by isometries and there is a constant C
such that every g P G is a C–HHS-automorphism. It turns out that, given an action of G
by HHS automorphisms, the HHS structure can always be perturbed so that every g P G
is a 0–HHS-automorphism [DHS20, §2.1]. We shall therefore assume that this stronger
condition holds whenever we have a group acting on an HHS by HHS automorphisms.

3.13 Definition (HHG). A hierarchically hyperbolic group (HHG) is a group G with
a choice of word metric and HHS structure pG,Sq such that G acts on itself by HHS
automorphisms, and cofinitely on S.

To recapitulate, if pG,Sq is an HHG and g, h P G, then there are isometries g : CU Ñ
CgU and h : CgU Ñ ChgU such that h¨g “ hg : CU Ñ ChgU . Moreover, gπU pxq “ πgU pgxq

and gρUV “ ρgUgV .

3.14 Examples of HHGs.
• Mapping class groups of finite-type surfaces: this is a combination of [Har81, MM99,

MM00, Beh06, BKMM12].
• All known cocompactly cubulated groups, by [HS20], using [Hag14, BHS17b].
• Artin–Tits groups of extra-large type [HMS21].
• The genus 2 handlebody group, by [Che20], using [HH21].
• Certain non–virtually-torsionfree lattices in products of trees [Hug21].
• Many 3–manifold groups, by [HRSS22], using [BHS19].
• Many quotients and extensions of (subgroups of) mapping class groups [BHS17a,

BHMS20, DDLS20, DDLS21, Rus21].
• Many combinations of other HHGs [BHS19, BR20a, RS20, BR20b].

Note that the property of being an HHG does not pass to finite-index overgroups [PS20].

3.15 Remark. The regulatory conditions in the definition of an HHS automorphism imply
that HHS automorphisms coarsely preserve the median µ of Proposition 3.7. We can make
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this exact when pG,Sq is an HHG whose diagonal action on G3
{S3 is free, that is when G

has no 2– or 3–torsion. Indeed, for such G, pick a transversal T for the diagonal action
of G on G3

{S3. For every x1, x2, x3 P G there is a unique tt1, t2, t3u P T such that there
is some g P G with gti “ xi for all i. Define µ1px1, x2, x3q “ gµpt1, t2, t3q. This map is
G–equivariant, in the sense that gµ1px, y, zq “ µ1pgx, gy, gzq for all g, x, y, z P G, and it
differs from µ by a bounded perturbation.

Otherwise µ1 can fail to be symmetric, so we have to settle for coarse symmetry. We
could instead allow µ to be bounded-set–valued and declare µ2px1, x2, x3q “

Ť

σPS3
µ1pxσp1q, xσp2q, xσp3qq

(which fits with the formulation of coarse median structures in [Fio21]), but in general it is
less disruptive to have coarse symmetry, as in the original definition of coarse median spaces
[Bow13]. In any case, we never directly use symmetry of µ. By increasing E, we can and
shall assume that µ is G–equivariant, meaning that G acts on itself by median-preserving
isometries.

If one really wants symmetry and for medians to be points, then this can be achieved
by relaxing the condition that the metric space underlying an HHG is exactly a Cayley
graph, which is perfectly natural in the coarse context. There are a couple of options.
Because symmetry only fails by a bounded amount, the simplest option is to just cone-
off any non–symmetric medians and have the resulting space underlie the HHG, with the
median being the cone-point. Alternatively, one can use an injective space on which G
acts properly coboundedly, by [HHP20, Cor. 3.8, 3.10] (Theorem 8.1 and Lemma 7.7 in the
colourable case), and define µ2px1, x2, x3q to be the barycentre of the µ1pxσp1q, xσp2q, xσp3qq
(see Section 7.4).

There is one remaining result about HHGs that we shall use.

3.16 Theorem ([BHS17a, Cor. 3.3]). If pG,Sq is an HHG, then every CU has finite
asymptotic dimension.

We shall actually be working with a subset of HHGs, namely those with a colouring.

3.17 Definition (Colourable). An HHG pG,Sq is colourable if there is a partition S “
Ůχ
i“1 Si such that eachSi consists of pairwise transverse domains, andG acts on tS1, . . . ,Sχu

by permutations. Equivalently, there is a finite-index subgroup Gchr C G such that each
Si is Gchr–invariant.

Not all HHGs are colourable; indeed Hagen has constructed an HHG that is an amal-
gamated product of colourable HHGs but is not itself colourable [Hag21]. However, all the
key examples forming the basis of list 3.14 are colourable.

3.18 Mapping class groups. Hierarchical hyperbolicity is modelled on the structure
enjoyed by mapping class groups. For a surface S “ Sg,p with genus g and p punctures,
it is a classical theorem of Dehn that MCGS is finitely generated [Deh87]; in fact it is 2–
generated if g ě 3 [Mon21] or p ď 1 [Kor05]. The spaces CU are (mostly) the curve graphs
[Har81] of subsurfaces, which were shown to be unbounded and hyperbolic by Masur–
Minsky [MM99]; there are now several articles proving that the hyperbolicity constant is
independent of the surface [Aou13, Bow14b, CRS14, HPW15].

Consistency was proved by Behrstock [Beh06], and a number of other key facts appear
in [BKMM12]. More discussion can be found in [CLM12]. The distance formula and results
on hierarchy paths come from the original article by Masur–Minsky [MM00]. The coarse
median was first constructed in [BM11]. Finiteness of the asymptotic dimensions of the CU
was established by Bell–Fujiwara [BF08], using work of Bowditch [Bow08]. The bound was
made explicit by Webb [Web15] and was later tightened by Bestvina–Bromberg [BB19].
Colourability is due to Bestvina–Bromberg–Fujiwara [BBF15].
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3.19 Previous work. There has by now been a substantial amount of work on HHSs
and HHGs, for instance providing more examples (and non-examples) than just those
listed above [Vok17, Spr17, Hae20, PS20], considering notions of boundaries for HHSs
[DHS17, Mou19, CDG20, NQ22], and establishing consequences of hierarchical hyperbol-
icity [BHS21, ABD21, RST18, ANS`19, HHL20, Sel22].

3.2 The Bestvina–Bromberg–Fujiwara construction

The hyperbolic spaces in whose product we shall embed our colourable HHG are produced
by a construction due to Bestvina–Bromberg–Fujiwara [BBF15]. A modified version of
the construction was given in [BBFS20], but whilst this simplifies certain proofs about the
construction itself, for us it would involve modifying the HHS structure a little, so we stick
to the original construction.

Having said that, we replace certain bounded sets in the construction by points for
convenience, as that is the situation we shall be operating in.

3.20 Projection axioms.
Let Y be a collection of geodesic metric spaces, with specified points ρXY P Y for every

distinct X,Y P Y. We say that Y satisfies the projection axioms with constant θ if the
following hold.

If X,Y, Z are distinct and dY pρ
X
Y , ρ

Z
Y q ą θ, then dZpρ

X
Z , ρ

Y
Z q ď θ. (P1)

For X ‰ Z, the set tY : dY pρ
X
Y , ρ

Z
Y q ą θu is finite. (P2)

If, moreover, a group G acts on Y, and each g P G induces isometries g : Y Ñ gY , then
we say that the projection axioms are satisfied G–equivariantly if the isometries satisfy
g1g2 “ g1 ¨ g2, and if gρXY “ ρgXgY holds for any X,Y P Y.

According to [BBF15], there is a constant Θpθq such that the following holds for any
K ě Θ and some choice of L in terms of K and θ.

3.21 The quasitree of metric spaces. Given Y and θ, the quasitree of metric spaces
CKY is obtained from the disjoint union

Ů

Y PY Y by attaching an edge of length LpK, θq
from ρXZ to ρZX whenever dpY pρ

X
Y , ρ

Z
Y q ď K for all Y P Y, where dpY is a small perturbation

of dY ; see item 3.23. Note that if the projection axioms are satisfied G–equivariantly, then
G acts on CKY.

The terminology quasitree of metric spaces comes from the fact that if the metric spaces
in Y are uniformly bounded, then the resulting space is a quasitree. Recall that a quasitree
is a geodesic space that is quasiisometric (equivalently roughly isometric [Ker20]) to a tree.
The following is a combination of Theorems 4.17 and 4.24 of [BBF15].

3.22 Theorem ([BBF15]). Suppose that Y contains finitely many isometry types of metric
space. If every element of Y is hyperbolic, then CKY is hyperbolic. If every element of CKY
has finite asymptotic dimension, then CKY has finite asymptotic dimension.

3.23. For X,Y P Y and x P X, define pY pxq P Y to be x if Y “ X, and ρXY otherwise. Ac-
cording to [BBF15, Cor. 4.10], the map pY coarsely agrees with the closest-point projection
map to Y inside CKY.

For each Y P Y, the perturbed function dpY : CKYˆCKY Ñ r0,8q is a symmetric map
that sends the diagonal to 0 and, up to an error depending only on θ, satisfies the triangle
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inequality. By [BBF15, Thm 3.3], there is a constant ε “ εpθq such that for all x, y P CKY
we have

dZppZpxq, pZpyqq ´ ε ď dpZpx, yq ď dZppZpxq, pZpyqq. (1)

We can take Θpθq ě 2θ ` ε.

A final point about the quasitree of metric spaces is that, similarly to HHSs, it is
possible to approximate the distance between two points by summing the distances in the
component metric spaces.

3.24 Theorem ([BBF15, Thm 4.13]). There is a constant K 1 “ K 1pK, θq ą K such that

1

2

ÿ

ZPY

  

dpZpx, yq
((

K1
ď dCKYpx, yq ď 6K ` 4

ÿ

ZPY

  

dpZpx, yq
((

K

for every x, y P CKY.
One noteworthy point on Theorem 3.24 is that there is no flexibility in the values of

K and K 1, unlike in the distance formula for HHSs. This will not cause problems for us.

3.3 Embedding colourable HHGs in products of hyperbolic spaces

We now aim to use the Bestvina–Bromberg–Fujiwara construction to embed colourable
HHGs in products of hyperbolic spaces. The following lemma shows how to apply the
Bestvina–Bromberg–Fujiwara construction to construct the hyperbolic spaces. Recall that
s0 is the minimal threshold constant from the distance formula.

3.25 Proposition. If pX,Sq is an HHS and S1 Ă S is a set of pairwise transverse
domains, then the set tCU : U P S1u with specified points tρVU : U, V P S1u satisfies the
projection axioms with constant s0`2E. Moreover, if G acts on X by HHS automorphisms
and S1 is G–invariant, then the projection axioms are satisfied G–equivariantly.

Proof. For Axiom (P1), suppose that dW pρUW , ρ
V
W q ą 2E. Let x lie in the product region

PU . We have dW px, ρVW q ě dW pρ
U
W , ρ

V
W q´E ą E, so the consistency inequality states that

dV px, ρ
W
V q ď E. This shows that dV pρUV , ρ

W
V q ď dV pρ

U
V , xq ` dV px, ρ

W
V q ď 2E.

Now, given U, V P S1, let x P PU and let y P PV . If dW pρUW , ρ
V
W q ě s0 ` 2E, then

dW px, yq ě s0. By the distance formula, this can only hold for finitely manyW , establishing
Axiom (P2). The equivariance statement is obvious.

3.26. In view of Proposition 3.25, if pG,Sq is an HHG with a colouring S “
Ůχ
i“1 Si, then

we can build a quasitree of metric spaces CKSi for each i. According to Theorems 3.16
and 3.22, the CKSi are hyperbolic spaces with finite asymptotic dimension.

The goal of this section is to prove the following, which sums up Propositions 3.32
and 3.38.

3.27 Theorem. Let pG,Sq be an HHG with a colouring S “
Ůχ
i“1 Si. There is a constant

K0 such that, for any K ě K0, there is a quasimedian, quasiisometric embedding Ψ : GÑ
śχ
i“1 CKSi.

3.28 Remark. If the conclusion of Theorem 3.27 holds for Gchr (see Definition 3.17), then
it follows for G because Gchr is coarsely dense in G. Since finite-index subgroups of HHGs
are HHGs (with different constants), we shall therefore assume that the action of G on
tSi : 1 ď i ď χu is trivial in the proof of Theorem 3.27.

With this assumption, the map Ψ that we shall produce in our proof of Theorem 3.27
will actually be equivariant. This equivariance is lost in passing to finite-index overgroups.
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3.29 Assumption. For the remainder of this section, we assume that pG,Sq is a colourable
HHG, with S “

Ůχ
i“1 Si and Gchr “ G. That is, gSi “ Si for all i and all g P G.

3.30 Construction (The map Ψ).
Let D1 be the constant from Lemma 3.8. Set D “ maxtD1,Θps0 ` 2Equ and K0 “

101D. Fix a choice of K ě K0, and consider the quasitrees of metric spaces CSi “ CKSi.
It will be convenient to have made a certain choice of representative domain Ui for each

colour i. Let U P Si, and let h lie in the product region PU . Set Ui “ h´1U . We have
that 1 P PUi .

Now, for each i, define ψi : G Ñ CSi by setting ψipgq “ gπUip1q, and let Ψ : G Ñ
śχ
i“1 CSi be given by Ψpgq “ pψ1pgq, . . . , ψχpgqq. That is, Ψ is simply the diagonal orbit

map with respect to the basepoint pπU1p1q, . . . , πUχp1qq.

3.31 Lemma. For any g P G and U P Si, we have dU pg, pUψipgqq ď E.

Proof. If U “ gUi, then pUψipgq “ πU pgq. Otherwise, U&gUi, so pUψipgq “ ρgUiU . The
fact that 1 P PUi implies that g P PgUi , so the definition of a product region shows that
dU pg, ρ

gUi
U q ď E.

Let us now prove that Ψ is a quasiisometric embedding. The argument follows [BBF15],
where it is proved for mapping class groups.

3.32 Proposition. Ψ is a quasiisometric embedding.

Proof. Because Ψ is equivariant and G is finitely generated, we see from the triangle
inequality that Ψ is coarsely Lipschitz. Let s “ maxts0,K

1 ` ε ` 2Eu, where ε is from
inequality (1), s0 is from the distance formula, and K 1 ą ε`2E is from Theorem 3.24. Let
g P G. For any U P Si, Lemma 3.31 shows that dU p1, gq ď dU ppUψip1q, pUψipgqq ` 2E ď
dpU pψip1q, ψipgqq ` ε ` 2E. In particular, if dU p1, gq ě s, then dpU pψip1q, ψipgqq ě K 1. It
follows that

2
  

dpU pψip1q, ψipgqq
((

K1
ě

  

dpU pψip1q, ψipgqq ` ε` 2E
((

K1
ě ttdU p1, gquus .

According to Theorem 3.24, this shows that dCSipψip1q, ψipgqq is coarse-linearly lower
bounded by

ř

UPSi
ttdU p1, gquus. The proof is completed by summing over i P t1, . . . , χu

and applying the distance formula.

It remains to show that Ψ is quasimedian. We use the following proposition.

3.33 Proposition. There is a constant λ such that ψiγ is an unparametrised λ–quasigeodesic
for any D–hierarchy path γ Ă G.

Let us fix some notation for the proof of Proposition 3.33. Fix a D–hierarchy path
γ : t0, . . . , T u Ñ G. By equivariance, we may assume that γp0q “ 1. Write γpT q “ g.
For any U P S, the path πUγ is an unparametrised D–quasigeodesic, so if U P Si X

Rel100Dp1, gq, then there exist a minimal aU P t0, . . . , T u and a maximal bU P t0, . . . , T u
with dU pγpaU q, 1q, dU pγpbU q, gq ą 2D. Moreover, πUγ|r0,aU s and πUγ|rbU ,T s are each 10D–
coarsely constant. Write γU “ γ|raU ,bU s. By consistency, bU ă aV whenever U ă V in the
ordering of Rel100Dp1, gq. Let us write xU “ γpaU q and yU “ γpbU q.

3.34 Lemma. If U P Si X Rel100Dp1, gq, then dCSipψipxq, πU pxqq ď 6K for all x P γU .
In particular, there is a constant D1 “ D1pD,Kq such that ψiγU is an unparametrised
D1–quasigeodesic.
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Proof. If the conclusion does not hold, then Theorem 3.24 provides a domain W P Si such
that dpW pψipxq, πU pxqq ě K. According to inequality (1), it follows that dW ppWψipxq, pWπU pxqq ě
K ´ ε. Lemma 3.31 precludes U “W , so W&U .

IfW “ xUi, then dW ppWψipxq, pWπU pxqq “ dW px, ρ
U
W q. Otherwise, (we are in the case

illustrated in Figure 2, and)

dW ppWψipxq, pWπU pxqq “ dW pρ
xUi
W , ρUW q ď dW px, ρ

U
W q ` E,

because x P PxUi . In either case, consistency tells us that dU px, ρWU q ď E. By definition of
γU , this implies that πU p1q and πU pgq are both at distance greater than E from ρWU . By
consistency, πW p1q and πW pgq are both E–close to ρUW , but this contradicts the fact that
πWγ is an unparametrised quasigeodesic, because dW px, ρ

U
W q ě K ´ ε´ E.

CU

CW

CUi CgUi
ρUi

U
•
πU (1)•

ρxUi

U
•

πU (g) •

ρWU•

πU (x)
•

•
ρUW

•
πW (1) •

πW (g)

•
πW (x)

Figure 2: The proof of Lemma 3.34.

Now letM ą K be a large constant, to be specified later. Enumerate RelM p1, gqXSi “

tU2, U4, . . . , Unu according to the total order. For simplicity, abbreviate aUj to aj and yUj
to yj , etc. Let b0 “ 0, an`2 “ T , and for odd j set αj “ γ|rbj´1,aj`1s

.

3.35 Lemma. Each ψiαj is an unparametrised quasigeodesic with constant independent
of M .

Proof. Let α̂j be a geodesic in CSi from ψipyj´1q to ψipxj`1q. It suffices to show that ψiαj
fellow-travels α̂j with constant independent of M .

Our choice of D (large in terms of E and Θ) allows us to invoke [BBF15, Thm 4.11] to
get a constant λ1 “ λ1pE,Kq such that if U P Rel100Dp1, gq XSi and Uj´1 ă U ă Uj`1,
then α̂j comes λ1–close to pUψipyj´1q and pUψipxj`1q.

Figure 3: The proof of Lemma 3.35.
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By [BBF15, Cor. 4.10], the map pU is coarsely Lipschitz, with constants depending
only on E and K. Since pUπUj´1pyj´1q “ ρ

Uj´1

U , this bounds dCSippUψipyj´1q, ρ
Uj´1

U q in
terms of dCSipψipyj´1q, πUj´1pyj´1qq, which in turn is bounded by Lemma 3.34. But, by
Lemma 3.34 and the definition of xU , the set ρ

Uj´1

U is uniformly close to ψipxU q in terms of
E and K. Thus pUψipyj´1q lies at uniformly bounded distance from ψipxU q, and similarly
pUψipxj`1q lies at uniform distance from ψipyU q.

We have shown that α̂j comes uniformly close to both ψipxU q and ψipyU q. According
to Lemma 3.34, it follows that the path ψiαj |raU ,bU s fellow-travels a subgeodesic of α̂j with
constant depending only on E and K. By the definition of total ordering on Rel100Dp1, gqX
Si, there is a bound on the overlap between any two of these subpaths.

To complete the proof, it suffices to show that their complement is bounded. But if x
and y are points on γ with Si X Rel100Dpx, yq “ ∅, then Theorem 3.24 and Lemma 3.31
tell us that dCSipψipxq, ψipyqq is bounded by 6K, because K ě 101D.

Our strategy for proving Proposition 3.33 will be to apply the following lemma for
recognising when a piecewise-quasigeodesic in a hyperbolic space is a quasigeodesic, which
extends a standard argument found in [HW15].

3.36 Lemma ([HW16, Lem. 4.3]). For any constants δ, λ and any function f , there is a
constant L0 satisfying the following. Suppose that P is a Lipschitz path in a δ–hyperbolic
space that decomposes as a concatenation P “ α1γ2α3 . . . γnαn`1 of λ–quasigeodesics. Sup-
pose further that, for all r ą 3δ, the sets

N pγj , rq X γj˘2 and N pγk, rq X αk˘1

have diameter at most fprq. If every γj has length at least L0, then P is an L0–quasigeodesic.

3.37 Lemma. There is a function f , independent of M , such that the subsets

NCSipψiγj , rq X ψiγj˘2 and αk XNCSipψiγk˘1, rq

of CSi have diameters bounded by fprq.

Proof. According to [BBF15, Thm A], if U P Si, then CU is quasiconvex in CSi, so
closest-point projection to CU is coarsely Lipschitz. Furthermore, [BBF15, Cor. 4.10] tells
us that the closest-point projection of CUj onto CUj˘2 in CSi is contained in a uniform
neighbourhood of ρUjUj˘2

. It follows that NCSipCUj , rqXCV has diameter bounded in terms
of r. This is enough for the first intersection by Lemma 3.34.

Again because of Lemma 3.34, this moreover shows that the closest point in CUk`1 to
ψipyk´1q is uniformly close to ρUk´1

Uk`1
. From the definition of xk`1 and Lemma 3.34, we also

know that ψipxk`1q is uniformly close to ρUk´1

Uk`1
. Thus the closest point projection of ψiαk to

CUk`1 is a coarse point, as ψiαk is a quasigeodesic from ψipyk´1q to ψipxk`1q (Lemma 3.35),
and similarly for CUk´1. This gives the bound for the second intersection.

We can now prove Proposition 3.33.

Proof of Proposition 3.33. γ is a D–quasigeodesic, so by Proposition 3.32 and the fact that
coordinate maps are Lipschitz, ψiγ is a Lipschitz path.

In light of Lemmas 3.34, 3.35, and 3.37, the conditions of Lemma 3.36 are met by
ψiγ “ pψiα1qpψiγ2q . . . pψiαn`1q, with all parameters in terms of E and K only. There
thus exists a constant L0 “ L0pE,Kq such that if every ψiγj has length at least L0, then
ψiγ is an L0–quasigeodesic.
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Now fix M “ L0 ` 20K. The length of ψiγj is at least the distance between its
endpoints, ψipxjq and ψipyjq. By construction and Lemma 3.34, these are, respectively,
10D ` 6K–close to πUj p1q and πUj pgq. We have bounded below the length of ψiγj by
dU p1, gq ´ 20D ´ 12K ě L0 ` 20K ´ 10D ´ 12K ą L0, which completes the proof.

3.38 Proposition. Ψ is quasimedian.

Proof. It is enough to prove that the ψi are quasimedian. Given x1, x2, x3 P G, let m “

µpx1, x2, x3q. As D ě D1, Lemma 3.8 shows that there are D–hierarchy paths γjk from
xj to xk that pass through m. Proposition 3.33 shows that the ψiγjk form a uniform
quasigeodesic triangle all of whose sides contain ψipmq. Since CSi is hyperbolic, the Morse
lemma tells us that ψipmq is uniformly close to µCSipψipx1q, ψipx2q, ψipx3qq.
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4 Quasicubicality

This section is based on [Pet21]. The end goal is to prove that colourable HHGs admit
quasimedian quasiisometries to finite-dimensional CAT(0) cube complexes, but the only
way hierarchical hyperbolicity is used directly is by invoking Theorem 3.27. In order to
make use of that result, we characterise when hyperbolic spaces admit such quasiisometries.
The proofs of both results conclude by applying Proposition 2.13.

In Section 4.1, we describe a construction due to Buyalo–Dranishnikov–Schroeder for
quasiisometrically embedding certain hyperbolic cones in finite products of trees [BDS07].
This is part of a broader circle of ideas [Dra03, Buy05b, LS05, BS00, BP03]. The purpose
of Section 4.2 is to show that this embedding is quasimedian. In a sense this is just
an observation, because Buyalo–Dranishnikov–Schroeder certainly had the necessary tools
at their disposal, but they were writing before the importance of medians had become
apparent in a coarse geometry context. In Section 4.3, we apply the construction to
hyperbolic spaces and colourable HHGs. We conclude with Section 4.4, which discusses
the special case of mapping class groups and some properties of the cube complexes they
are quasiisometric to.

4.1 Embedding hyperbolic cones in finite products of trees

Here we describe the construction of [BDS07, §7–9]. Given a complete, bounded metric
space Z, the first step is to construct a hyperbolic graph CoZ, called the hyperbolic cone
on Z. The second step is to show that if Z has finite capacity dimension, then CoZ
can be quasiisometrically embedded in a finite product of trees. Capacity dimension was
introduced by Buyalo in [Buy05a]; the notion itself will not be important for us, as we
shall replace it by asymptotic dimension when we apply the construction, so the reader is
referred to [Buy05a] for a definition.

4.1 Definition (Separated, net). Let X be a metric space and let r ą 0. A subset Y is
said to be r–separated if dpy, y1q ě r for all distinct y, y1 P Y , and Y is an r–net if it is
r–coarsely dense.

Let Z be a complete, bounded metric space. After rescaling Z, we shall assume that
diamZ ă 1.

4.2 Hyperbolic cones. Fix a positive constant r ď 1
6 , and for each integer k ě 0 let Vk

be an rk–separated rk–net in Z. The hyperbolic cone is not canonical, in the sense that
it depends on these choices. In particular, the properties of the cone will depend on the
value of r, which we call the parameter of the cone. On the other hand, the choices of
net are immaterial, so we shall have no qualms about calling it “the” hyperbolic cone on
Z (with parameter r).

Associate with each v P Vk the ball Bpvq “ BZpv, 2r
kq. Observe that since diamZ ă 1,

the separated net V0 is a singleton. Let us write V0 “ tou. We have Bpoq “ Z.
The hyperbolic cone CoZ on Z is a graph. Its vertex set is V “

Ů

kě0 Vk. Vertices
v1 P Vk1 and v2 P Vk2 are joined by an edge if either of the following holds.

• k1 “ k2 and the closed balls Bpv1q and Bpv2q intersect.
• k1 “ k2 ´ 1 and Bpv2q Ă Bpv1q.

The level `pvq of v P V is the unique k such that v P Vk.

The next fact justifies the name “hyperbolic cone”.
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4.3 Proposition ([BP03, Prop. 2.1],[BDS07, Thm 7.4]). If Z is a complete and bounded
metric space, then CoZ is hyperbolic, and the hyperbolicity constant depends only on
diamZ and the parameter r.

Following [BDS07, §8,9], we now describe how to construct the product of trees. The
process starts by building a sequence of coloured open covers of our bounded metric
space Z. Each colour gives rise to a tree.

4.4 Definition (Disjoint, colouring). A collection of subsets of Z is said to be disjoint if
no two of its members intersect. An n–colouring of a collection V of subsets of Z is a finite
decomposition V “ Ť

cPC Vc, with |C| “ n, such that each Vc is disjoint. Cf. Definition 2.4.

Note that an n–colouring need not be a partition. The trees will be built from the
colours in the following proposition. More specifically, given a colour c, the vertices will be
the elements of the sequence of covers that are coloured c, and we shall use the sequence
to add edges.

4.5 Proposition ([Buy05b, Prop. 2.3], [BDS07, Thm 8.2]). Let Z be a complete, bounded
metric space with capacity dimension n. There is a constant ε P p0, 1q such that for any
sufficiently small r P p0, ε4q there exists a sequence pUk “

Ť

cPC Uckqkě0 of pn` 1q–coloured
open covers of Z such that, for any hyperbolic cone on Z with parameter r, the following
are satisfied.
(C1) suptdiamZpUq : U P Uku ă rk for every k. Moreover, Uc0 “ tZu for all c P C.
(C2) For every v P Vk`1 there exists U P Uk such that Bpvq Ă U .
(C3) For every c P C and for any distinct U P Uck and U 1 P Uck1 with k ď k1, we have that

NZpU
1, εrk

1

q is either disjoint from U or is a subset of it.

Our arguments will not make explicit use of (C2), though it is used by Buyalo–
Dranishnikov–Schroeder to prove Proposition 4.9.

4.6. Define Uc “ Ů

kě0pUck ˆ tkuq. Formally, an element of Uc is a pair pU, kq, where
U P Uck, but we shall often abuse notation slightly by just writing U P Uc. We call k the
level of U , and denote it by `pUq, just as with elements of V . Let U “

Ů

cPC Uc. See
Figure 4.

Figure 4: Schematic picture of one of the Uc.

Now, in the sense of Proposition 4.5, fix a sufficiently small constant r ă mint1
7 ,

ε
4u, a

sequence pUkqkě0 of coloured covers of Z, and a hyperbolic cone on Z with parameter r.
To improve clarity, let us write Uc0 “ tocu. Of course, (C1) states that, as subspaces of Z,
we have oc “ Z for all c.
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4.7 Construction (Trees). For each colour c we build a rooted tree Tc. The vertex set of
Tc is Uc, and the root is oc. We join vertices pU, kq and pU 1, k1q with k ă k1 by an edge if
U 1 Ă U as subsets of Z and there is no pU2, k2q P Uc with U 1 Ă U2 and k ă k2 ă k1.

Figure 5: The part of Tc corresponding to Figure 4.

We are ready to define a map fc : CoZ Ñ Tc.

4.8 Construction (Maps). Set fcpoq “ oc. For v P Vk with k ą 0, define fcpvq “ U P Uc
to be the element of maximal level that has Bpvq Ă U . This exists because oc “ Z, and
it is well defined by disjointness of each Ucj . Each point x P CoZ r V lies on some edge
vv1—choose fcpxq P tfcpvq, fcpv1qu arbitrarily.

4.9 Proposition ([BDS07, Lem. 9.9, Thm 9.2]). Suppose that Z is a complete, bounded
metric space with capacity dimension n. The maps fc|V : V Ñ Tc are 2–Lipschitz, and
pfcqcPC : CoZ Ñ

ś

cPC Tc is a quasiisometric embedding of CoZ in a product of n ` 1
trees.

4.2 The embedding is quasimedian

We start with a couple of simple preliminary lemmas. With each U P Uk we associate a
subset Û Ă Vk by setting Û “ tv P Vk : Bpvq X U ‰ ∅u. Recall that if s and t are vertices
of a tree T , then rs, ts is the unique geodesic between them.

4.10 Lemma. Suppose that U P Uck and that v P Û . We have fcpvq P roc, U s XBTcpU, 2q.

Proof. As noted in [BDS07, §9.3], the fact that Bpvq has radius 2rk, which is greater than
suptdiamZpW q : W P Uju for all j ě k, implies that `pfcpvqq ă k. Since Bpvq intersects U ,
property (C3) of U tells us that fcpvq P roc, U s.

If dTcpoc, Uq ď 2 then we are done. Otherwise, let U 1, U2 be the vertices of roc, U s with
dTcpU,U

1q “ 1 and dTcpU,U
2q “ 2. We have a chain of subsets of Z as follows:

Bpvq Ă NZpU, 4r
kq Ă NZpU

1, 4rkq Ă

Ă NZpU
1, εrk´1q Ă NZpU

1, εr`pU
1qq Ă U2.

By definition of fc, we have that fcpvq P tU 1, U2u.

4.11 Lemma. For every U P U , the set Û is nonempty and has diamCoZpÛq ď 2.

Proof. Nonemptiness is automatic because Vk is an rk–net. Let v P Û . There exists
v´ P Vk´1 such that dZpv´, vq ď rk´1. Now, if z P Bpv1q for some v1 P Û , then

dZpz, v
´q ď dZpz, Uq ` diamZpUq ` dZpU, vq ` dZpv, v

´q

ď 4rk ` rk ` 2rk ` rk´1,

which is less than 2rk´1 because r ă 1
7 . Thus Bpv

1q Ă Bpv´q for all v1 P Û , so every v1 P Û
is joined to v´ by an edge of CoZ. Thus diamCoZpÛq ď 2.
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We can now establish that the map of Proposition 4.9 is quasimedian (Definition 2.12).

4.12 Proposition. Suppose that Z is a complete, bounded metric space with capacity di-
mension n. The map pfcqcPC : CoZ Ñ

ś

cPC Tc of Construction 4.8 is quasimedian.

Proof. We must show that each factor map fc is quasimedian, and it is enough to work
with the restriction fc|V to the coarsely dense subset V Ă CoZ. According to Lemma 2.17,
it suffices to show that fc is a coarse morphism for the binary operations µCoZp¨, ¨, oq and
µTcp¨, ¨, ocq. Let x1 and x2 be vertices of CoZ, and write ki “ `pxiq.

For any v P Vk and any j ă k, the fact that Vj is an rj–net implies that there is some
vj P Vj with dZpv, vjq ď rj . For any z P Bpvq, we have

dZpz, vjq ď dZpz, vq ` dZpv, vjq ď 2rk ` rj ă 2rj .

Hence Bpvq Ă Bpvjq. Applying this to x1 and x2 shows that we can fix geodesics γi “
po “ xi0 , xi1 , . . . , xiki “ xiq, from o to xi inside CoZ, such that `pxij q “ j. We have
Bpxij q Ă Bpxij´1q for all i, j.

Recall that for a vertex x P V , the image fcpxq is defined to be the element U P Uc of
maximal level such that Bpxq Ă U . Let us write Ui “ fcpxiq and Uij “ fcpxij q. If j1 ď j2,
then Bpxij2 q Ă Bpxij1 q, so Uij2 Ă Uij1 , by property (C3) of U . Hence fcγi is a monotone
map to the unique geodesic roc, Uis in Tc.

The median µTcpU1, U2, ocq is the maximal-level element U12 P roc, U1s X roc, U2s. In
other words, it is the element U12 P Uc of maximal level such that Bpx1q Y Bpx2q Ă U12.
Let us write k12 “ `pU12q.

Let δ be a hyperbolicity constant for CoZ, which exists by Proposition 4.3. Fix a
geodesic γ12 in CoZ from x1 to x2, and define

M “
 

x P CoZ : maxtdCoZpx, γ1q, dCoZpx, γ2q, dCoZpx, γ12qu ď 2δ ` 2
(

.

Because CoZ is δ–hyperbolic, it is 2δ ` 2–hyperbolic. Thus µCoZpx1, x2, oq PM , and the
diameter of M is bounded by some constant D “ Dpδq. Note that M X γi ‰ ∅.

Because U12 contains Bpxiq, it intersects Bpxik12 q. Thus xik12 P Û12, so Lemma 4.10
tells us that fcpxik12 q P roc, U12s XBTcpU12, 2q. See Figure 6.

Figure 6: The images in Tc of various points of CoZ.

Moreover, from Lemma 4.11, we have that dCoZpx1k12
, x2k12

q ď 2. In particular, xik12
is 2–close to both γ1 and γ2. Now let yi be the unique element of M X γi of maximal
level, which has `pyiq ě `pxik12 q “ k12. Since fcγi is monotone in roc, Uis, we have that
fcpyiq P rfcpxik12 q, Uis, and it follows that

dTc
`

µTcpfcy1, fcy2, ocq, U12

˘

ď 2.
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Because y1, y2, and m “ µCoZpx1, x2, oq all lie in M , the fact that fc|V is 2–Lipschitz
(Proposition 4.9) shows that dTcpfcpyiq, fcpmqq ď 2D. To sum up, we have

dTc
`

µTcpfcx1,fcx2, ocq, fcpµCoZpx1, x2, oqq
˘

“ dTcpU12, fcpmqq

ď dTc
`

µTcpfcy1, fcy2, ocq, fcpmq
˘

` 2

ď dTc
`

µTcpfcm, fcm, ocq, fcpmq
˘

` 2` 4D

“ 2` 4D,

because µTc is 1–Lipschitz in each coordinate and µTcpa, a, bq “ a.

4.3 Application to hyperbolic spaces and colourable HHGs

Here we apply Proposition 4.12 to hyperbolic spaces of finite asymptotic dimension. We
then use this together with Theorem 3.27 to show that colourable hierarchically hyperbolic
groups are quasimedian quasiisometric to finite-dimensional CAT(0) cube complexes. Let
us introduce some terminology to simplify future discussion.

4.13 Definition (Quasicubical). A coarse median space X is quasicubical if there is a
finite-dimensional CAT(0) cube complex Q and a quasimedian quasiisometry X Ñ Q.

We first collect a few facts about hyperbolic spaces.

4.14 Definition (Visual). A hyperbolic space X is visual if, for some x0 P X, every x P X
lies on a geodesic ray emanating from x0.

The above definition of visual is a strengthening of a definition due to Bonk–Schramm
[BS00]: any hyperbolic space that is visual in this sense is clearly visual in the sense of
[BS00], and in the sense of [BDS07].

The following connects hyperbolic spaces with hyperbolic cones. Recall that BX denotes
the Gromov boundary of a hyperbolic space X [Gro87].

4.15 Proposition ([BDS07, Thm 7.1], [BS00, Prop. 5.6]). If X is a visual hyperbolic
space, then there is a quasiisometry X Ñ CopBXq.

Because we care about hyperbolic spaces that might not be visual and only need quasi-
isometric embeddings, we can afford to modify our starting space to make it visual.

4.16 Lemma (Visualisation). Every hyperbolic space X admits a median-preserving iso-
metric embedding in a visual hyperbolic space Y with asdimY “ maxt1, asdimXu.

Proof. Given X, let Y be the hyperbolic space obtained by attaching a ray rx “ r0,8q to
each x P X. Clearly the inclusion map X ãÑ Y is median-preserving and isometric. Fix
x0 P X Ă Y . We see that Y is visual by concatenating a geodesic from x0 to x with the
geodesic ray rx.

According to [BD08, Prop. 23], the asymptotic dimension of a subspace of Y is bounded
above by the asymptotic dimension of Y . In particular, asdimY ě maxtasdim rx, asdimXu.
The upper bound on asdimY is given by [BD08, Thm 25].

The next proposition lets us replace capacity dimension by asymptotic dimension.

4.17 Proposition ([MS13, Prop. 3.6]). If Y is a geodesic hyperbolic space, then the ca-
pacity dimension of BY is at most asdimY .
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4.18 Corollary. For any hyperbolic space X with finite asymptotic dimension, there is a
complete, bounded metric space Z with finite capacity dimension and such that there is a
quasiisometric embedding X Ñ CoZ.

Proof. Given X as in the statement, let Y be the visual hyperbolic space produced by
Lemma 4.16, which has asdimY ď 1 ` asdimX. Let Z “ BY . As the boundary of
a hyperbolic space, Z is complete and bounded [BS00, Prop. 6.2], and Proposition 4.17
shows that the capacity dimension of Z is finite. The concatenation X ãÑ Y Ñ CoZ is a
quasiisometric embedding by Proposition 4.15.

We can now prove our results on quasicubicality of hyperbolic spaces and colourable
hierarchically hyperbolic groups.

4.19 Theorem. If X is hyperbolic, then X is quasicubical if and only if asdimX ă 8.

Proof. The forward direction holds because asymptotic dimension is preserved by quasi-
isometries [BD08, Prop. 22] and Wright showed that the asymptotic dimension of a CAT(0)
cube complex is bounded by its cubical dimension [Wri12].

For the reverse direction, Corollary 4.18 shows that X quasiisometrically embeds in a
hyperbolic cone CoZ, and this embedding is automatically quasimedian by Lemma 2.15.
Propositions 4.9 and 4.12 show that CoZ, in turn, admits a quasimedian quasiisometric
embedding in a finite product of trees. According to Proposition 2.13, this implies that X
is quasicubical.

For hyperbolic groups, Haglund–Wise showed the stronger result that they are always
quasiisometric to locally finite CAT(0) cube complexes [HW12, Thm 1.8]. Theorem 4.19
extends this, because all hyperbolic groups have finite asymptotic dimension [Gro93, p.31].
It is not possible to get local finiteness in the generality of Theorem 4.19, though, because
it applies, for example, to a regular tree of infinite valence.

4.20 Theorem. Colourable HHGs are quasicubical.

Proof. Let pG,Sq be a colourable HHG. According to Theorem 3.27, there is a quasime-
dian quasiisometric embedding G Ñ

śχ
i“1 CKSi. By Theorems 3.16 and 3.22, the CKSi

are hyperbolic spaces with finite asymptotic dimension. Applying Theorem 4.19, we ob-
tain finite-dimensional CAT(0) cube complexes Q1, . . . , Qχ such that Qi is quasiisometric
to CKSi, and these quasiisometries are automatically quasimedian by Lemma 2.15. We
therefore have a quasimedian quasiisometric embedding

GÑ

χ
ź

i“1

CKSi Ñ

χ
ź

i“1

Qi

of G in a finite-dimensional CAT(0) cube complex. Proposition 2.13 shows that G is
quasicubical.

4.4 Mapping class groups and unusual cube complexes

Perhaps the most interesting special case of Theorem 4.20 is that of mapping class groups.
For one thing, it is well known that only the simplest mapping class groups can act properly
by semisimple isometries on CAT(0) spaces [KL96, Thm 4.2], and they also cannot act
properly on infinite-dimensional CAT(0) cube complexes [Gen19, Thm 1.9]. However,
Theorem 4.20 shows that they do quasiact properly and coboundedly on finite-dimensional
CAT(0) cube complexes.
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4.21. There are a few previous results of a similar flavour for mapping class groups. Indeed,
the idea to use hyperbolic cones to prove embedding results for mapping class groups comes
from Hume [Hum17], who proved that mapping class groups can be quasiisometrically
embedded in finite products of trees. This is a non-asymptotic version of a result of
Behrstock–Druţu–Sapir [BDS11] (also see [Bow14a]). An equivariant but more coarse
result was proved by Bestvina–Bromberg–Fujiwara [BBF21], who showed that mapping
class groups admit isometric actions on finite products of quasitrees such that the orbit
maps are quasiisometric embeddings. A proof of quasicubicality of mapping class groups
based on this can be found in [Pet21]. Furthermore, Hamenstädt constructed uniformly
locally finite CAT(0) cube complexes with proper, coarsely Lipschitz coarse surjections to
mapping class groups [Ham21], though these maps are not known to be quasiisometries.

4.22. Another reason that the specialisation to mapping class groups is interesting is that
they satisfy strong quasiisometric rigidity [BKMM12]. For quasiisometries f, g of a metric
space X, write f „ g if the function dpfp¨q, gp¨qq : X Ñ R is bounded. The quasiisometry
group of X is

QIpXq “ tquasiisometries of Xu{„.

Behrstock–Kleiner–Minsky–Mosher proved that, except in a few small cases, QIpMCGSq –
MCGS, and hence the same holds for any metric space quasiisometric to MCGS. This
shows that if Q is a CAT(0) cube complex quasiisometric to MCGpSq, such as the finite-
dimensional examples provided by Theorem 4.20, then

• QIpQq is an infinite discrete group;
• Q is quasiisometric to a finitely generated group, but no CAT(0) cube complex

quasiisometric to Q admits a proper cobounded group action [KL96].
There are examples of CAT(0) cube complexes with either one of these properties, but I
am not aware of other examples that have both.

I thank Jingyin Huang for generously sharing and explaining his knowledge of the below
examples.

4.23. As in [NR97], cube complexes that are quasiisometric to groups but not to cocom-
pactly cubulated groups are given by uniform lattices Γ ă Sppn, 1q. These are hyperbolic,
so are quasiisometric to CAT(0) cube complexes QΓ by [HW12, Thm 1.8] or Theorem 4.19.
They have property (T) by work of Kazhdan (see [BdlHV08, §3.3]) and Kostant [Kos75]. By
Pansu’s rigidity theorem [Pan89], if QΓ admitted a proper cobounded group action, then Γ
would act with unbounded orbits on some CAT(0) cube complex, contradicting a result of
Niblo–Reeves for groups with property (T) [NR97, Thm B]. On the other hand, Schwartz’s
theorem [Sch95] implies that QIpΓq is isomorphic to the commensurator of Γ. By Corlette
[Cor92] or Gromov–Schoen [GS92], Γ is arithmetic, so Margulis’ characterisation of arith-
meticity [Mar75, Thm 9] (also see [Zim84, §6.2]) implies that the commensurator of Γ is
Hausdorff-dense in Sppn, 1q. Hence QΓ has indiscrete quasiisometry group.

4.24. For an example with infinite discrete quasiisometry group, let Λ ă SOpn, 1q be a
nonarithmetic nonuniform lattice, which exists by [GPS88]. The group Λ is hyperbolic
relative to virtually abelian subgroups, so by residual finiteness, Λ is virtually a colourable
HHG [BHS19, Thm 9.1], and hence is quasiisometric to a CAT(0) cube complex QΛ by
Theorem 4.20. By Margulis’ characterisation, Λ has finite index in its commensurator, so
the quasiisometry group of QΛ is discrete by Schwartz’s theorem. Whether Λ can virtually
act on a CAT(0) cube complex is unknown in general, but Wise showed that Λ is virtually
compact special, hence cocompactly cubulated, when n “ 3 [Wis21, Thm 17.14].
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5 Median–quasiconvexity and packing

In this section, we prove a simple coarse Helly result for quasicubical coarse median spaces;
it also appears in [Pet21]. The functional statement is Corollary 5.6. In Section 5.2, we
use this and Theorem 4.20 to deduce packing properties of median-quasiconvex subgroups
of colourable HHGs, just as in [HHP20].

Convex subsets are important throughout geometry. In coarse settings, such as that
of hyperbolic spaces, it is natural to consider quasiconvexity instead; this can be thought
of as a notion of convexity that allows for some bounded error. For coarse median spaces,
the appropriate version is median-quasiconvexity.

5.1 Definition (Median-quasiconvexity). A subset Y of a coarse median space X is k–
median-quasiconvex if dpY, µpy, y1, xqq ď k for all y, y1 P Y , x P X.

For HHSs, median quasiconvexity can also be characterised in terms of the hierarchy
structure [RST18, Prop. 5.11], and in that context it is often referred to as hierarchical
quasiconvexity [BHS19, Def. 5.1]. Let us now list some examples.

5.2 Examples of median-quasiconvexity.
• A full subcomplex of a CAT(0) cube complex is convex if and only if it is 0–median-

quasiconvex (a.k.a. median-convex).
• A subspace of a hyperbolic space is quasiconvex if and only if it is median-quasiconvex.
• Bounded subsets are median-quasiconvex.
• Morse quasigeodesics in HHSs are median-quasiconvex [RST18].
• If X is a coarse median space of finite rank, then every subset of X has a (coarsely

unique) median-quasiconvex hull [Bow18, Prop. 6.2].
• Multicurve stabilisers are median-quasiconvex in mapping class groups [BHS19, Prop. 5.11].
• If M is a closed 3–manifold without Nil or Sol components, then the cut tori in the

prime decomposition of M form median-quasiconvex subgroups of π1M .
• Graphical subgroups of graph products of groups that are coarse median spaces [BR20b].
• Convex cocompact subgroups of mapping class groups [FM02, KL08, Ham05].
• More generally, stable subgroups of HHGs [ABD21].

5.1 The coarse Helly property

We need a lemma from [HHP20] about convex hulls in CAT(0) cube complexes. This will
also be used in Section 6.

5.3 Lemma. Let Q be a CAT(0) cube complex of dimension ν. Given A Ă Q, let A0 “ A,
and set

Ai`1 “ µpAi, Ai, Qq “ tµpa, a
1, vq : a, a1 P Ai, v P Qu.

Letting ν 1 “ maxt1, ν ´ 1u, we have Aν1 “ hullA.

Proof. The result is trivial if A is convex. Otherwise, fix x P hullpAqrA, and let H be the
collection of hyperplanes of hullA that are adjacent to x. For each h P H, let Q “ h`\h´

denote the partition defined by h, where x P h`. Let th1, . . . , hnu be a maximal pairwise
crossing family in H. We have n ď ν. For each i, let Hi denote the set of elements of
H that are disjoint from hi, together with hi. An important observation is that h´i Ă h`

whenever h P Hi r thiu.
If n “ 1, then x is a cut-point or leaf of (the graph formed by the 1–skeleton of) hullA,

so taking any a P AX h`, b P AX h´ gives x “ µpx, a, bq, and we are done.
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So suppose that n ě 2. If for every a P AXh´1 we have a P h´2 , then for every b P AXh`2
we have b P h`1 , so if we take z1 P A X h´1 and z2 P A X h`2 , then µpx, z1, z2q P h

` X h1`

for every h P H1, h1 P H2. We can reason similarly if every element of A X h´2 lies in
h´1 . Otherwise there exist z1 P A X h´1 X h`2 and z2 P A X h`1 X h´2 , and we again have
µpx, z1, z2q P h

` X h1` for every h P H1, h1 P H2. Let y1 “ µpx, z1, z2q P A1.
We proceed inductively. Suppose that we have yi P Ai such that yi P h` for all

h P
Ť

jďi`1 Hj . Let zi`2 be any point of A that is separated from yi by hi`2, and set
yi`1 “ µpx, yi, zi`2q. Since x, yi P h` for every h P

Ť

jďi`1 Hj , the same is true of yi`1,
and since yi and zi`2 lie on opposite sides of hi`2, we also have that yi`1 P h

` for all
h P Hi`2.

By this procedure, we obtain yn´1 P An´1XhullA that is not separated from x by any
hyperplane of hullA, so we must have yn´1 “ x.

The constant ν 1 is almost certainly not optimal. A likely candidate seems to be rlog2 νs,
as this is optimal when A is the star of a vertex in a ν–cube, which one would expect to
be the worst case.

We now consider median-quasiconvex subsets of quasicubical coarse median spaces.
Recall that a quasiinverse of a quasiisometry f : Y Ñ Z is a map f̄ : Z Ñ Y such that
dpy, f̄fpyqq is uniformly bounded over all y P Y .

5.4 Proposition. Let X be a quasicubical coarse median space, and let f : X Ñ Q be a
quasimedian quasiisometry, with quasiinverse f̄ , where Q is a finite-dimensional CAT(0)
cube complex. For each k there is an r such that if Y Ă X is k–median-quasiconvex, then
the convex subcomplex hull fpY q Ă Q satisfies dHuaspfpY q, hull fpY qq ď r. Moreover, there
is a constant k0 such that f̄pY 1q is k0–median-quasiconvex for every convex subcomplex
Y 1 Ă Q.

Proof. In the notation of Lemma 5.3, we have hull fpY q “ fpY qdimQ. Using this, it is
straightforward to see from median-quasiconvexity of Y and the quasimedian property of
f that hull fpY q is at bounded Hausdorff-distance from fpY q. The reverse direction is
obvious.

The following is a slight extension of the CAT(0) cube complex version of Helly’s
theorem (see [Rol98, Thm 2.2]); it is surely well known, but I have been unable to locate
it in the literature.

5.5 Lemma (Helly’s theorem). Let Q be a CAT(0) cube complex, and let Y be a collection
of convex subcomplexes of Q such that either Y is finite or some element of Y is finite. If
each pair of elements of Y intersects, then

Ş

Y Y ‰ ∅.

Proof. Let Y0, Y1, Y2 P Y, and if Y has a finite element then ensure that Y0 is one such.
Let yij P Yi X Yj . By convexity, µpy01, y02, y12q P Y0 X Y1 X Y2. Repeating this inductively
with Y0, Y1, and

Şα
i“0 Yi gives the result if Y is finite. In the case where Y is infinite but

Y0 is finite, we use transfinite induction and the fact that a nested sequence of nonempty
subsets of a finite set is nonempty.

5.6 Corollary. Let X be a quasicubical coarse median space, and let f : X Ñ Q be a
quasimedian quasiisometry, where Q is a finite-dimensional CAT(0) cube complex. For
every k and r there is a number R as follows. Suppose that Y is a collection of k–median-
quasiconvex subsets of X that are pairwise r–close. If either Y is finite or some element
of Y is finite, then there is some x P X with dpx, Y q ď R for all Y P Y.
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Proof. Fix Y0 P Y, ensuring that Y0 is finite if possible. For Y P Y, let Y 1 “ N pY, rq
if Y ‰ Y0, and let Y 10 “ Y0. The Y 1 are uniformly median-quasiconvex and intersect
pairwise. According to Proposition 5.4, the convex subcomplexes hull fpY 1q are at bounded
Hausdorff-distance from the fpY 1q. Moreover, if Y0 is finite then so is hull fpY0q. The
hull fpY 1q intersect pairwise, so Lemma 5.5 shows that there is some v P

Ş

Y hull fpY 1q.
The point x “ f̄pvq is as desired.

5.7 Remark. In [HHP20], a version of Corollary 5.6 is proved for all HHSs by using a
nice result of Chepoi–Dragan–Vaxès for hyperbolic spaces [CDV17]. Note that not all
CAT(0) cube complexes are HHSs, and it is not known whether all HHSs are quasimedian
quasiisometric to CAT(0) cube complexes, so it is not entirely clear how the generalities
relate to each other. However, both the results from [CDV17] and [HHP20] give more
information about the point x.

5.2 Packing

We now describe an application of Corollary 5.6 to bounded packing.

5.8 Definition (Bounded packing). A finite collection H of subgroups of a discrete group
G has bounded packing in G if for each n there is a constant r such that for any collection
of n distinct cosets of elements of H, at least two are separated by a distance of at least r.

5.9. The bounded packing property for subgroups of finitely generated groups was in-
troduced by Hruska–Wise [HW09] (see also [HW14]) as a metric abstraction of tools
used by several authors to prove intersection properties of subgroups of hyperbolic groups
[GMRS98, RS99], and in turn as a stepping stone towards ensuring cocompactness of the
cube complex associated with a finite collection of quasiconvex codimension–1 subgroups
[Sag97, NR03]. The prototypical example is that of a quasiconvex subgroup of a hyperbolic
group. That such subgroups have bounded packing was first established by Gitik–Mitra–
Rips–Sageev, using compactness of the boundary [GMRS98], and another proof was given
by Hruska–Wise, using induction on the height of the subgroups [HW09].

More general examples have been provided by Antolín–Mj–Sisto–Taylor, who use induc-
tion on height to show that finite collections of stable subgroups in any finitely generated
group have bounded packing [AMST19]. Stable subgroups were introduced by Durham
and Taylor [DT15], and they are always hyperbolic. More generally, Morse subgroups were
introduced independently by Tran [Tra19] and Genevois [Gen20], and the notion is implicit
in earlier work of Sisto [Sis16]. A subgroup is stable if and only if it is hyperbolic and Morse
[Tra19, Prop. 4.3]. Notably, Tran proved that any finite collection of Morse subgroups has
bounded packing [Tra19, Theorem 1.2], again by using induction on height.

In HHSs, median-quasiconvexity is more general. Indeed, every Morse subgroup of a
group that is an HHS is median-quasiconvex (for instance by Lemma 3.8), and, for example,
Z is median-quasiconvex in Z2 but not Morse.

5.10 Theorem. If H is a finite collection of median-quasiconvex subgroups of a colourable
HHG G, then H has bounded packing in G.

Proof. By Corollary 5.6, any finite collection of cosets of elements of H that are pairwise
r–close must all come R–close to a single point x P G. In other words, they all intersect
the R–ball about x. Since distinct cosets of a given subgroup are disjoint and balls in G
are finite, this bounds the size of the collection of cosets.
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6 Coarse injectivity

This section is based on joint work with Thomas Haettel and Nima Hoda [HHP20]. How-
ever, the arguments presented here take place in slightly different generality. Indeed, we
work with quasicubical coarse median spaces, rather than the more general coarse median
spaces with quasicubical intervals [HHP20, Def. 2.8]. Although the assumption here is less
general, it is good enough for our purposes, as we intend to apply the results to colourable
HHGs via Theorem 4.20. Making this stronger assumption simplifies the arguments in a
couple of places, but the global strategy is the same as in [HHP20].

Throughout this section, pX,µ, dq will denote a coarse median space. For the majority,
we shall assume thatX is quasicubical. For some arguments in Section 6.2, we shall assume
that X is geodesic—the corresponding arguments in [HHP20] only assume it to be roughly
geodesic, but again, we only intend to apply our results to geodesic spaces. At the end of
Section 6.3, we shall need to assume that X is locally finite, in order to apply Corollary 5.6.

Our goal is to construct a new metric σ on X that is coarsely injective, quasiisometric
to d, and invariant under median-preserving isometries. This is summarised in Theo-
rem 6.20. The construction is a coarse version of one due to Bowditch, who builds a new
metric on median metric spaces and proves that it is injective [Bow20b]; see Remark 6.7.

6.1 Construction of the new metric σ

The following is a coarsification of an idea of Bowditch [Bow20b, §3].

6.1 Definition (Contraction). A contraction on a coarse median spaceX is a 1–quasimedian,
p1, 1q–coarsely Lipschitz map φ : X Ñ R.

6.2 Definition (Chain-quotient). A chain-quotient on a CAT(0) cube complex Q is a map
ψ : QÑ Z obtained from a chain of hyperplanes c “ phiqiPIXZ (Definition 2.9) by setting
ψpvq to be the unique i such that v P h`i´1 X h

´
i . We say that ψ is dual to c.

6.3 Remark. Chain-quotients are 1–Lipschitz and median-preserving. They are a special
case of the more general restriction quotients defined by Caprace–Sageev [CS11].

6.4 New metric. Let X be a coarse median space. For x, y P X, define

σpx, yq “ suptφpxq ´ φpyq : φ is a contractionu.

Note that since the composition of any contraction with an isometry of R is also a
contraction, this is equivalent to defining σpx, yq “ supt|φpxq´φpyq| : φ is a contractionu.

6.5 Remark. The article [HHP20] considers so-called K–contractions for a constant K ě

0, and defines the metric σ for an arbitrary K ą 0. However, none of the properties we
are interested in here require any particular choice of K in order to be valid. Also, as
noted in [HHP20, Rem. 2.9], differing choices of K actually give bilipschitz metrics. We
have therefore essentially fixed the value K “ 1 for this section, which simplifies certain
constants down the line.

6.6 Lemma. For any coarse median space, σ is a metric.

Proof. Symmetry holds because the composition of any contraction with an isometry of
R is also a contraction. Given distinct x, y P X, consider the map φ sending x to 1 and
X r txu to 0, which is a contraction. Hence σpx, yq ě φpxq ´ φpyq “ 1, so σ separates
points. Let x, y, z P X. For every contraction φ, we have

σpx, zq ` σpz, yq ě pφpxq ´ φpzqq ` pφpzq ´ φpyqq “ φpxq ´ φpyq.

As this holds for every contraction, we have σpx, zq ` σpz, yq ě σpx, yq.
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6.7 Remark. Bowditch’s work on median spaces [Bow20b] uses 0–contractions in the sense
of Remark 6.5 where we use contractions, as he is working in a non-coarse setting. This has
the advantage that it produces an injective metric (Definition 7.1), rather than a merely
coarsely injective metric (Definition 6.16), though it does mean that the above proof that
points are separated does not work. In fact, Bowditch obtains this retrospectively after
showing that his (a priori pseudo)metric is bilipschitz to the initial metric. In the case of
CAT(0) cube complexes, Bowditch’s metric is the piecewise-`8–metric, which is equivalent
to counting the length of the longest chain of hyperplanes separating two points. Variations
on this have been considered in [Gen20, PSZ22].

6.8 Lemma. If g P IsompX, dq is median-preserving in the sense that gµpx, y, zq “
µpgx, gy, gzq for all x, y, z P X, then g P IsompX,σq.

Proof. If φ is a contraction, then so is φg´1, and φg´1pgxq ´ φg´1pgyq “ φpxq ´ φpyq.

Let us now show that σ is quasiisometric to d. The quasicubicality assumption makes
the proof here considerably easier than in [HHP20].

6.9 Lemma. If pX,µ, dq is a coarse median space with a λ–quasimedian-quasiisometry
to a finite-dimensional CAT(0) cube complex pQ,µQ, d1

Qq, then pX,σq is quasiisometric to
pX, dq.

Proof. Let x, y P X. Since contractions are p1, 1q–coarsely Lipschitz, we have σpx, yq ď
dpx, yq ` 1.

Now, according to [Bow20b, §7] or [BvdV91, Cor. 2.5], there is a chain-quotient ψ such
that ψfpxq ´ ψfpyq “ d8Qpfpxq, fpyqq. Set φ “

1
λψf . For any a, b P X, we have

|φpaq ´ φpbq| ď
1

λ
d8Qpfpaq, fpbqq ď

1

λ
d1
Qpfpaq, fpbqq ď dpa, bq ` 1,

so φ is p1, 1q–coarsely Lipschitz. Moreover, for any a, b, c P X, we have
ˇ

ˇψfpµabcq ´ µRpψfa, ψfb, ψfcq
ˇ

ˇ

ď
ˇ

ˇψfpµabcq ´ ψµQpfa, fb, fcq
ˇ

ˇ`
ˇ

ˇψµQpfa, fb, fcq ´ µpψfa, ψfb, ψfcq
ˇ

ˇ

ď d1
Q

`

fpµabcq, µQpfa, fb, fcq
˘

ď λ.

Hence φ is a contraction. In particular, σpx, yq ě φpxq ´ φpyq, so

σpx, yq ě
1

λ
d8Qpfpxq, fpyqq

ě
1

λ dimQ
d1
Qpfpxq, fpyq ě

1

λdimQ

ˆ

1

λ
dpx, yq ´ λ

˙

.

6.2 σ is weakly roughly geodesic

Here we show that pX,σq is weakly roughly geodesic, assuming that pX, dq is quasicubical
and geodesic. This is a vital part of the proof that pX,σq is coarsely injective. It is also the
most technical part. We follow [HHP20, §2.4]. An outline is provided after a definition.

6.10 Definition (Weakly roughly geodesic). A metric space pX,σq is weakly roughly
geodesic if there is a constant Cσ such that for every a, b P X and every r P r0, σpa, bqs,
there is a point c P X with |σpa, cq ´ r| ď Cσ and σpa, cq ` σpc, bq ď σpa, bq ` Cσ.
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Weak rough geodesicity does admit a more symmetric formulation, where we require
σpa, cq ď r`Cσ and σpc, bq ď σpa, bq´r`Cσ, but the given version will be more convenient
for us to verify.

6.11 Overview.
The overall strategy is as follows. Given a pair of points a and b, we wish to find a

third point that looks as though it could almost be on a σ–geodesic between them. We
use the quasimedian quasiisometry f : X Ñ Q.

As CAT(0) cube complexes are geodesic, we could take a point γ in the correct place
along a geodesic from fpaq to fpbq. However, this does not a priori tell us anything
about σpa, f̄pγqq. Motivated by the fact that the `8–metric on Q can be constructed via
chain-quotients [Bow20b, BvdV91], we could instead try to use a geodesic in pQ, d8q.

Taking a point γ along such a geodesic, we then need to compute σpa, f̄pγqq. We
could try to use the fact that d8 is characterised in terms of chain-quotients to do this,
but it is not clear that all chain-quotients can be pulled back along f to give maps that
can be approximated by contractions. We should therefore consider the subset of chain-
quotients whose pullbacks can be approximated like this, rather than all chain-quotients.
This impacts the construction of γ, and the technicalities are dealt with in Lemma 6.13.

This leaves the potential problem that this subset of chain-quotients could be empty.
This possibility is disposed of in Lemma 6.12, which shows that for any contraction on X,
its pullback along f̄ can be approximated by a scaled copy of some chain-quotient.

We are then left to compute σpa, cq ` σpc, bq. Although Lemmas 6.12 and 6.13 have
given us approximable chain-quotients for the pairs pfpaq, γq and pγ, fpbqq that are re-
strictions of a common chain-quotient, we do not know whether that larger chain-quotient
is approximable. We get around this with Lemma 6.14, which provides a way to glue
contractions on X. Its proof uses geodesicity of d, but not quasicubicality.

6.12 Lemma. If Q is a CAT(0) cube complex of dimension ν, then for every contraction χ
on Q there is a chain-quotient ψ on Q such that |χ´ 4νψ| ď 4ν.

Proof. For each n P Z, let Kn “ χ´1p4νn ´ 2ν, 4νns. Because Q is geodesic, the set of
integers n such that Kn ‰ ∅ is an interval ru´ 1, vs. Furthermore, Kn disconnects Q for
every n P ru, v ´ 1s.

Claim: If x P hullKn, then χpxq P p4νn´ 3ν, 4νn` νs.

Proof of Claim. In the notation of Lemma 5.3, consider x P pKnqi. According to that
lemma, it suffices to show by induction that |χpxq ´ χpKnq| ď i. This is clear for i “ 0.
Suppose that it holds for i, and let x P pKnqi`1. There exist a1, a2 P pKnqi such that
x “ µpx, a1, a2q. Because χ is 1–quasimedian, we have |χpxq´χpKnq| ď 1`maxt|χpajq´
χpKnq|u ď i` 1. ♦

This means that the convex subcomplexes hullKn and hullKm are disjoint whenever
n ‰ m. Thus, for each n P ru, vs there is a hyperplane hn separating hullKn´1 from
hullKn [Che94, Cor. 1]. These hyperplanes form a chain, which has a dual chain-quotient
ψ : QÑ ru´1, vs. Given x P Q, there exists n P ru´1, vs such that χpxq P p4νn´4ν, 4νns,
and we have ψpxq P tn´ 1, nu. Hence |χpxq ´ 4νψpxq| ď 4ν.

Note that Lemma 6.12 applies in particular if we take a contraction φ : X Ñ R on a
quasicubical coarse median space and let χ “ 1

2λφf̄ : Q Ñ R. Thus the pullback of each
contraction on X along f̄ can be approximated by a chain-quotient. We now show how to
modify the idea of “pick a point in the right place along an `8–geodesic of Q” when only
considering a subset of chain-quotients.
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6.13 Lemma. Let Q be a CAT(0) cube complex, and let C be a set of chain-quotients
on Q. Let σC be the pseudometric defined by

σCpα, βq “ maxt|ψpαq ´ ψpβq| : ψ P Cu for α, β P Q.

For each integer r P r0, σCpα, βqs, there is a vertex γ P rα, βs satisfying the follow-
ing. There are chain-quotients ψ1 P C, dual to ph1,1, . . . , h1,rq, and ψ2 P C, dual to
ph2,1, . . . , h2,sq, that realise σCpα, γq and σCpγ, βq, respectively, and that have the property
that ph1,1, . . . , h1,r, h2,1, . . . , h2,sq is a chain.

Note that the modulus function can be dropped if ´ψ P C for every ψ P C, as will be
the case when we apply Lemma 6.13.

Proof of Lemma 6.13. The identity map pQ, d8q Ñ pQ, σCq is 1–Lipschitz, so for any α, β P
Q and any integer r P r0, σCpα, βqs, there is some γ P rα, βs with σpα, γq “ r. Among all
possible choices, let γ be maximally far from α in the sense that

if γ1 P rα, βs has σCpα, γ1q “ r and γ P rα, γ1s, then γ1 “ γ.

Let ψ2 P C realise σCpγ, βq, with ph2,1, . . . , h2,sq the defining hyperplanes separating γ
from β. Let h be a hyperplane that is adjacent to γ and either is equal to h2,1 or separates
γ from h2,1. Let γ1 P rα, βs be the vertex separated from γ by h only. Since h2,1 separates
γ from β, so must h. As γ P rα, βs, this means that h cannot separate γ from α, so
γ P rα, γ1s. By the choice of γ, we must have σCpα, γ1q “ r ` 1.

Let ψ1 P C realise σCpα, γ1q, with ph1,1, . . . .h1,r`1q the defining hyperplanes separating
α from γ1. Because only h separates γ1 from γ, and because σCpα, γq “ r, we know both
that h1,r`1 “ h, and that ψ1 realises σCpα, γq. Moreover, ph1,1, . . . , h1,r, h2,1, . . . , h2,sq is a
chain, because h is disjoint from h1,r, and either h “ h2,1 or h separates h1,r from h2,1.

Although ph1,1, . . . , h1,r, h2,1, . . . , h2,sq in Lemma 6.13 is a chain, the chain-quotient
dual to it is not necessarily an element of C. We get around this with the remaining
ingredient in the proof of Proposition 6.15: a criterion for gluing together contractions.

6.14 Lemma (Gluing contractions). Let X be a geodesic coarse median space, let a, b P X,
and let r, s ą ε ą 0. Suppose that φ1 : X Ñ r0, rs and φ2 : X Ñ rr, r ` ss are contractions
with ψ1paq ď ε and φ2pbq ě r ` s´ ε. If t P r0,mintr, su ´ ε´ 6s is such that the sets

Z1 “ tx P X : φ1pxq ď r ´ tu and Z2 “ tx P X : φ2pxq ě r ` tu

are disjoint, then σpa, bq ě r ` s´ 2t´ 2ε´ 14.

Proof. For i “ 0, 1 define Y i
1 “ tx P X : φ1pxq ď r ´ t ´ 7 ` iu, Y i

2 “ tx P X : φ2pxq ě
r ` t` 7´ iu. Note that if i1 ă i2 then Y i1

j Ă Y i2
j .

Claim 1: dpY 1
1 , Y

1
2 q ě 5.

Proof of Claim 1. Let xj P Y 1
j . Since Y

1
2 Ă Z2, we have x2 R Z1, so φ1px2q ą r´ t. On the

other hand, φ1px1q ď r ´ t´ 6, so φ1px2q ´ φ1px1q ě 6. As φ1 is p1, 1q–coarsely Lipschitz,
this means that dpx1, x2q ě 5. ♦

Let Y “ X r pY 0
1 Y Y

0
2 q, and define a map ψ : X Ñ r0, r ` s´ 2t´ 14s as follows.

If x P Y 0
1 then ψpxq “ φ1pxq.

If x P Y then ψpxq “ r ´ t´ 7.

If x P Y 0
2 then ψpxq “ φ2pxq ´ 2t´ 14.
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We shall show that ψ is a contraction, which will complete the proof because ψpaq ď ε and
ψpbq ě r ` s´ 2t´ 14´ ε.

Let m1 : r0, rs Ñ r0, r ´ t ´ 7s be the median-preserving 1–Lipschitz map given by
m1pzq “ mintz, r ´ t ´ 7u. Observe that ψ|Y 0

1 YY
“ m1φ1. In particular, ψ|Y 0

1 YY
is 1–

quasimedian and p1, 1q–coarsely Lipschitz. Defining m2 as a similar maximum function
shows the same of ψ|YYY 0

2
.

Claim 2: ψ is p1, 1q–coarsely Lipschitz.

Proof of Claim 2. It suffices to consider x P Y 0
1 and y P Y 0

2 . Let γ be a geodesic from x to
y. There exists τ such that γpτq P Y 0

1 but γpτ 1q R Y 0
1 for any τ 1 ą τ . Write γpτq “ z1. We

have dpx, z1q` dpz1, yq “ dpx, yq and φ1pz1q ď r´ t´ 7. Moreover, for any τ 1 ą τ , we have

φ1pz1q ě φ1γpτ
1q ´ dpγpτq, γpτ 1qq ´ 1 ą r ´ t´ 7´ pτ 1 ´ τq ´ 1,

so φ1pz1q ě r´ t´ 9. We can similarly construct z2 P Y
0

2 along a geodesic from z1 to y so
that φ2pz2q ď r ` t` 9.

Using these, we compute

ψpyq ´ ψpxq ď |ψpyq ´ ψpz2q| ` |ψpz2q ´ ψpz1q| ` |ψpz1q ´ ψpxq|

“ |φ2pyq ´ φ2pz2q| ` |φ2pz2q ´ 2t´ 14´ φ1pz1q| ` |φ1pz1q ´ φ1pxq|

ď
`

dpy, z2q ` 1
˘

` 4`
`

dpz1, xq ` 1
˘

“ dpx, z1q ` dpz2, yq ` 6

“ dpx, yq ´ dpz1, z2q ` 6.

From Claim 1, we know dpz1, z2q ě dpY 1
1 , Y

1
2 q ě 5, and hence ψpyq´ψpxq ď dpx, yq`1. ♦

Claim 3: ψ is 1–quasimedian.

Proof of Claim 3. In view of the observation that ψ|Y 0
1 YY

“ m1φ1, and similarly when
restricted to Y Y Y 0

2 , there are essentially only two cases to consider.
In the first case, suppose that x, y P Y 0

1 and z P Y 0
2 . Then ψpxq, ψpyq ď r ´ t ´ 7,

whereas ψpzq “ φ2pzq ´ 2t´ 14 ě r ´ t´ 7. Moreover, φ1pzq ą r ´ t´ 7 as z R Y 0
1 . This

means that

µR
`

ψpxq, ψpyq, ψpzq
˘

“ µR
`

φ1pxq, φ1pyq, φ1pzq
˘

ď r ´ t´ 7.

As φ1 is 1–quasimedian, we get that φ1pµxyzq ď r ´ t´ 6, so µxyz P Y 1
1 , which is disjoint

from Y 0
2 by Claim 1. Hence ψpµxyzq “ m1φ1pµxyzq, and we can compute

|ψpµxyzq ´ µRpψx, ψy, ψzq| “ |m1φ1pµxyzq ´ µRpφ1x, φ1y, φ1zq|

“ |m1φ1pµxyzq ´ µRpm1φ1x,m1φ1y,m1φ1zq| ď 1.

A similar argument applies when x P Y 0
1 and y, z P Y 0

2 .
The remaining case is when x P Y 0

1 , y P Y , z P Y 0
2 . Since ψpxq “ φ1pxq ď r ´ t ´ 7,

ψpyq “ r ´ t´ 7, and ψpzq “ φ2pzq ´ 2t´ 14 ě r ´ t´ 7, we have µRpψpxq, ψpyq, ψpzqq “
r ´ t´ 7. If µxyz P Y , then ψpµxyzq “ r ´ t´ 7. If µxyz P Y 0

1 , then ψpµxyzq “ φ1pµxyzq ď
r´ t´ 7. As φ1 is 1–quasimedian and y, z R Y 0

1 , we also have φ1pµxyzq ě r´ t´ 8, and so
µRpψx, ψy, ψzq ´ ψpµxyzq ď 1. We can argue similarly when µxyz P Y 0

2 . ♦
Thus ψ is a contraction, so σpa, bq ě ψpbq ´ ψpaq ě r ` s´ 2ε´ 2t´ 14.

We now have all the pieces we need to show that σ is weakly roughly geodesic.
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6.15 Proposition. If pX,µ, dq admits a λ–quasimedian-quasiisometry to a ν–dimensional
CAT(0) cube complex Q, then σ is weakly roughly geodesic.

Proof. We may assume that λ ě 1. Given a, b P X, let α “ fpaq and β “ fpbq.
Lemma 6.9 shows that there is some q ě 1 such that σ and d are q–quasiisometric, so
σpa, f̄pαqq, σpb, f̄pβqq ď 2qλ.

Let C denote the set of chain-quotients ψ : QÑ R such that there is some contraction
φ : X Ñ R with |φf̄ ´ 8λνψ| ď 8λν. For each contraction φ : X Ñ R, the rescaled
pullback 1

2λφf̄ : Q Ñ R is a contraction on Q, and Lemma 6.12 tells us that there is a
chain-quotient ψ : QÑ R such that |φf̄ ´ 8λν| ď 8λν. In other words, every contraction
on X gives rise to an element of C.

We shall prove that σ is weakly roughly geodesic with constant

Cσ “ 22λp6ν ` qq.

Let r P r0, σpa, bqs. If r ď Cσ, then we can take c “ a for the desired point. Similarly, if
r ě σpa, bq ´Cσ, then we can take c “ b. Otherwise, let r1 “ t r

8λν u and apply Lemma 6.13
to α, β, C, and r1 to obtain a vertex γ P rα, βs and chain-quotients ψ1 and ψ2. Let c “ f̄pγq.

Claim 1: |σpa, cq ´ r| ď Cσ.

Proof of Claim 1. By definition of C, for any contraction φ : X Ñ R there is some ψ P C
(and conversely, for any ψ P C there is a contraction φ) such that

ˇ

ˇ|φf̄pξq ´ φf̄pζq| ´ 8λν|ψpξq ´ ψpζq|
ˇ

ˇ

ď
ˇ

ˇ|φf̄pξq ´ 8λνψpξq| ´ |φf̄pζq ´ 8λνψpζq|
ˇ

ˇ ď 16λν

holds for all ξ, ζ P Q. It follows that
ˇ

ˇσpf̄pξq, f̄pζqq ´ 8λνσCpξ, ζq
ˇ

ˇ ď 16λν. (2)

By the choice of γ, we have σCpα, γq “ r1. Therefore, (2) gives

|σpa, cq ´ r| ď |σpf̄pαq, f̄pγqq ´ 8λνr1| ` 2qλ` 8λν

ď 24λν ` 2qλ,

which is at most Cσ. ♦
It remains to show that σpa, cq ` σpc, bq ď σpa, bq ` Cσ. The strategy is to apply

Lemma 6.14.
Recall that Lemma 6.13 has provided chain-quotients ψ1 and ψ2 such that r1 “ σCpα, γq “

ψ1pγq´ψ1pαq and s1 “ σCpγ, βq “ ψ2pβq´ψ2pγq. After translations of R, we may assume
that ψ1pαq “ 0, ψ1pγq “ ψ2pγq “ r1, and ψ2pβq “ r1 ` s1.

By definition of C, there are contractions φ1 and φ2 onX such that |φif̄´8λνψi| ď 8λν.
In particular, φ1paq ď φ1pf̄pαqq ` λ` 1 ď 10λν. Moreover, from (2) we obtain

φ2pbq ě 8λνpr1 ` s1q ´ 10λν

“ 8λνpσCpα, γq ` σCpγ, βqq ´ 10λν

ě σpf̄pαq, f̄pγqq ` σpf̄pγq, f̄pβqq ´ 42λν

ě σpa, cq ` σpc, bq ´ 2qλ´ 42λν.
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Furthermore, there is no loss in composing φ1 with maxt¨, 0u and mint¨, ru to assume
that φ1 : X Ñ r0, rs, and we may similarly assume that φ2 : X Ñ rr, r ` ss, where
s “ σpa, cq ` σpc, bq ´ r.

Claim 2: The assumptions of Lemma 6.14 are met with ε “ 42λν ` 2qλ if we take
t “ 24λν ` 2q.

Proof of Claim 2. We must first check that t P r0,mintr, su ´ ε ´ 6s. Indeed, we have
r ´ ε´ 6 ě Cσ ´ ε´ 6 ě t, and also

σpa, cq ` σpc, bq ´ r ´ ε´ 6 ě σpa, bq ´ r ´ ε´ 6

ě Cσ ´ ε´ 6 ě t.

Now let Z1, Z2 be as in the statement of Lemma 6.14. If x P Z1, then φ1f̄pfxq ď
φ1pxq ` q ` 1 ď r ´ t ` q ` 1, so ψ1pfxq ď

r´t`q`1`8λν
8λν ď r´16λν

8λν ď r1 ´ 1. A similar
argument shows that if x P Z2, then ψ2pfxq ě r1 ` 1. The final property of the chains in
Lemma 6.13 prohibits these from being satisfied simultaneously. ♦

Applying Lemma 6.14, we find that

σpa, bq ě σpa, cq ` σpc, bq ´ 2t´ 2ε´ 14

“ σpa, cq ` σpc, bq ´ 132λν ´ 4q ´ 4qλ´ 14

ě σpa, cq ` σpc, bq ´ Cσ.

Together with Claim 1, this completes the proof.

6.3 σ is coarsely injective

Here we show that pX,σq has the following property when X is quasicubical, geodesic, and
locally finite.

6.16 Definition (Coarse injectivity). A metric space pX,σq is coarsely injective if there
exists ε such that for any collection of balls Bpxi, riq with ri ` rj ě σpxi, xjq for all i, j,
the total intersection

Ş

Bpxi, ri ` εq is nonempty.

Weak rough geodesicity allows us to uniformly thicken such a family of balls so that
they intersect pairwise. Our strategy will be to show that balls are median-quasiconvex
and apply Corollary 5.6.

6.17 Lemma. If px, µ, dq is a coarse median space with a λ–quasimedian-quasiisometry to
a CAT(0) cube complex, then dpµabc, µpa, b, µabcqq ď 6λ2.

Proof. Because CAT(0) cube complexes are median spaces, we have

d
`

fpµabcq, fpµpa, b, µabcqq
˘

ď d
`

µQpfa, fb, fcq, µQpfa, fb, fµabcq
˘

` 2λ

ď d
`

µQpfa, fb, fcq, µQ
`

fa, fb, µQpfa, fb, fcq
˘˘

` 3λ “ 3λ.

Hence dpµabc, µpa, b, µabcqq ď d
`

f̄fpµabcq, f̄fpµpa, b, µabcqq
˘

` 2λ ď 3λpλ` 1q.

The above distance is actually bounded in all coarse median spaces [Bow19, Lem. 8.1],
[HHP20, Lem. 2.22], but restricting like this gives us a more explicit constant.

Let Cσ be such that σ is weakly roughly geodesic with constant Cσ.

6.18 Lemma. Every ball in pX,σq is p6λ2 ` 3Cσ ` 2q–median-quasiconvex.
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Proof. Fix a P X and r ą 0. Let b, c P Bσpa, rq. We want to bound the distance from µbcx
to Bσpa, rq for all x P X. Let φ be any contraction with φpµbcxq ą φpaq. Lemma 6.17 tells
us that dpµbcx, µpb, c, µbcxqq ď 6λ2, so φpµpb, c, µbcxqq ě φpµbcxq ´ 6λ2 ´ 1. Thus

µRpφb, φc, φµbcxq ě φpµpb, c, µbcxqq ´ 1

ě φpµbcxq ´ 6λ2 ´ 2.

In particular, at least one of φpbq and φpcq must be at least φpµbcxq ´ 6λ2 ´ 2.
As this holds for all contractions φ with φpµbcxq ą φpaq, we have that σpa, µbcxq ď

maxtσpa, bq, σpa, cqu`6λ2`2. That is, µbcx P Bσpa, r`6λ2`2q. By weak rough geodesicity,
there is a point d P Bσpa, rq with σpd, µbcxq ď 6λ2 ` 2` 3Cσ.

6.19 Proposition. If pX,µ, dq is a locally finite, quasicubical, geodesic coarse median
space, then pX,σq is coarsely injective.

Proof. Suppose we have balls Bσpxi, riq with ri`rj ě σpxi, xjq for all i, j. By Lemma 6.18,
they are uniformly median-quasiconvex, and the weak rough geodesicity of σ provided by
Proposition 6.15 means that they are uniformly close pairwise. Moreover, the fact that
pX,σq is quasiisometric to the locally finite space pX, dq (Lemma 6.9) shows that every
Bσpxi, riq is finite. Corollary 5.6 thus provides a point x P X and a constant R that
is independent of the Bσpxi, riq such that σpx,Bσpxi, riqq ď R for every ball. Hence
Ş

Bσpxi, ri `Rq ‰ ∅.

6.4 Summary of properties of σ

The following theorem summarises the various properties of σ that we have proved in the
main case of interest.

6.20 Theorem. If pX,µ, dq is a locally finite, quasicubical, geodesic coarse median space,
then it is quasiisometric to the coarsely injective space pX,σq. Moreover, median-preserving
isometries of pX,µ, dq are isometries of pX,σq.

Proof. The fact that pX,σq is coarsely injective is Proposition 6.19, and the quasiisometry
is provided by Lemma 6.9. The statement about isometries is Lemma 6.8.

6.21 Remark. It follows from coarse injectivity that σ is actually roughly geodesic, rather
than merely weakly roughly geodesic, because it is coarsely dense in its injective hull, which
is a geodesic space.

We finish this section by making explicit the implication for groups of Theorem 6.20.

6.22 Corollary. Suppose that G is a finitely generated group that is a quasicubical coarse
median space. If the regular action of G is median-preserving, then G acts properly cobound-
edly on the coarsely injective space pG, σq.
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7 Injective metric spaces

In this section, we discuss some of the theory of injective metric spaces. In Section 8, we
shall use this theory together with Theorems 4.20 and 6.20 to deduce consequences for
colourable HHGs, some of which are noted in [HHP20]. A good reference for basics of
injective spaces is [Lan13].

7.1 Definition (Injectivity). A geodesic metric space is injective if every family of pairwise
intersecting balls has nonempty total intersection.

7.2 Remark. Clearly every injective space is 0–coarsely injective, and it turns out that
every 0–coarsely injective metric space is geodesic, hence injective. On the other hand,
there are non-geodesic spaces, such as tn3 : n P Zu or tpx, |x|qu Ă pR2, d1q, that are not
coarsely injective, even though every family of pairwise intersecting balls has nonempty
total intersection. See Lemma 7.7 for more information on the relation between the two
notions.

Injective spaces were introduced by Aronszajn–Panitchpakdi [AP56], and there are
several other characterisations; see [Lan13, §2].

7.1 Injective hulls

It is an interesting and useful fact due to Isbell that every metric space has an essen-
tially unique injective hull [Isb64]. This fact was later rediscovered by Dress [Dre84] and
Chrobak–Larmore [CL94]. We follow the exposition of [Lan13].

7.3. Let pX, dq be a metric space, and write RX “ tf : X Ñ Ru, which we equip with
the (extended) metric d8pf, gq “ supt|fpxq ´ gpxq| : x P Xu. As usual, we write f ď g if
fpxq ď gpxq for all x P X, and f ă g if f ď g but f ‰ g. (It is worth pointing out that
f ă g does not mean that fpxq ă gpxq for all x P X.) Define the subspace

EpXq “ tf P RX : fpxq ` fpyq ě dpx, yq for all x, y P Xu.

Taking y “ x in the definition shows that f ě 0 for all f P EpXq.
There are two important ways to construct elements of EpXq. Firstly, for z P X, let

dz : X Ñ R be given by dzpxq “ dpz, xq. By the triangle inequality, dz P EpXq for all z P X.
Secondly, given f1, . . . , fn P EpXq and t1, . . . , tn P R with

ř

ti ě 1, the sum
ř

tifi P EpXq.
In particular, the affine segment joining any two points of EpXq is contained in EpXq.

7.4 Injective hull. Call an element f P EpXqminimal if it is minimal in EpXq with respect
to ă. If f P RX and there is some x P X for which fpxq ă suptdpx, yq ´ fpyq : y P Xu,
then there is some y P X with dpx, yq ´ fpyq ą fpxq, whence f R EpXq. On the other
hand, if fpxq ą suptdpx, yq ´ fpyq : y P Xu, then there is some positive δ such that
fpxq ` fpyq ą dpx, yq ` δ for all y, so f is not minimal. This shows that:

• f P EpXq if and only if fpxq ě suptdpx, yq ´ fpyq : y P Xu for all x P X, and
• f P EpXq is minimal if and only if fpxq “ suptdpx, yq ´ fpyq : y P Xu for all x P X.

As an example, we see that every dz is minimal. Let

EpXq “ tf P EpXq : f is minimalu,

and define a map e : X Ñ EpXq by e : z ÞÑ dz. It is straightforward to see that e is an
isometric embedding.
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7.5 Theorem ([Isb64]). EpXq is injective. Any isometric embedding of X in an injective
space factors via e. In particular, EpXq “ epXq if X is injective.

We call EpXq the injective hull of X.

7.6 Isometries. The action of IsomX on X gives rise to an action of IsomX on EpXq.
Namely, for any φ P IsomX and f P EpXq, the map φ ¨ f “ fφ´1 : X Ñ R is an element
of EpXq. Moreover, this restricts to an action on EpXq. Although it would appear to be
more natural to define this as a right action, it will be seen from the continued discussion
that the left action is actually more convenient.

As an example, we compute φ¨dz “ dpz, φ´1xq “ dpφz, xq “ dφzpxq. That is, φ¨dz “ dφz
for all z P X. Equivalently, if we write φ̂ for the image of φ in SympEpXqq, then we have

φ̂e “ eφ. (3)

It can be shown from an alternative characterisation of injectivity that φ̂ is the unique
isometry of EpXq that satisfies this equality; see [Lan13, Prop. 3.7].

The following lemma, whose proof is identical to to that of [CCG`20, Prop. 3.12],
shows the connection between coarsely injective spaces and injective spaces.

7.7 Lemma. A metric space is coarsely injective if and only if it is coarsely dense in its
injective hull. In particular, if a group G acts properly coboundedly on a coarsely injective
space X, then G acts properly coboundedly on EpXq.

7.8 A projection map. We now describe a retraction p : EpXq Ñ EpXq that interacts
nicely with e and IsomX. This retraction was originally constructed by Dress [Dre89].

For f P EpXq, define f˚pxq “ suptdpx, yq ´ fpyq : y P Xu. Note that f P EpXq if
and only if f˚ “ f . In any case, f˚ ď f . Although f˚ might not lie in EpXq, the function
qpfq “ 1

2pf ` f
˚q is an element of EpXq. Moreover, for any f, g P EpXq, we have

f˚pxq “ suptdpx, yq ´ gpyq ` gpyq ´ fpyq : y P Xu ď g˚pxq ` d8pf, gq,

so d8pf˚, g˚q ď d8pf, gq, and hence q is 1–Lipschitz.
Define ppfq to be the pointwise limit of the sequence pqnpfqqn.

7.9 Proposition ([Dre89]). p is a 1–Lipschitz retraction EpXq Ñ EpXq, and φ̂p “ pφ̂ for
all φ P IsomX.

Proof. To check that p is a 1–Lipschitz retraction to EpXq, it remains only to check that
the codomain is correct. For all f P EpXq and all n ě 1, we have ppfq ď qnpfq , and hence
ppfq˚ ě qnpfq˚. But now

0 ď ppfq ´ ppfq˚ ď qnpfq ´ qnpfq˚ “ 2qnpfq ´ pqnpfq ` qnpfq˚q

“ 2pqnpfq ´ qn`1pfqq,

which converges pointwise to 0 as nÑ 8. This shows that ppfq P EpXq. It is easily seen
that φ̂pqpfqq “ qpφ̂pfqq for all f P EpXq and φ P IsomX, and it follows that φ̂p “ pφ̂.
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7.2 Barycentric spans

Let X be an injective metric space. Here we give a new construction, which we call the
barycentric span of a finite subset of X. By specialising this construction, we can obtain
both the bicombing of [Lan13, Prop. 3.8] and a barycentre map.

Write ∆n for the standard n–dimensional simplex. That is, ∆n “ tps1, . . . , sn`1q P

r0, 1sn`1 :
ř

si “ 1u. Given a finite ordered list of elements a1, . . . , an of a set A, we shall
write ã “ pa1, . . . , anq P A

n.

7.10 Definition (Barycentric span). Given a finite tuple x̃ “ px1, . . . , xnq P X
n and a

point s̃ P ∆n´1, let
∆x̃ps̃q “ e´1p

`

ÿ

si dxi
˘

P X.

The barycentric span of points x1, . . . , xn P X is the subspace ∆x̃ “ t∆x̃ps̃q : s̃ P ∆n´1u.

Recall that for a tuple ã “ pa1, . . . , anq P A
n and a permutation σ P Sn, if aσpiq “ ai

for all i, then σã “ ã, so σ P Stab ã.

7.11 Proposition. Let X be an injective space. Barycentric spans are
1. permutation-invariant in the sense that ∆σx̃pσs̃q “ ∆x̃ps̃q for any σ P Sn;
2. equivariant in the sense that φ∆x̃ps̃q “ ∆φx̃ps̃q for any φ P IsomX;
3. metrically stable under perturbations in the sense that

dp∆x̃ps̃q,∆ỹps̃qq ď min
 

ÿ

si dpxi, yσpiqq : σ P Stab s̃
(

for any x̃, ỹ P Xn.

Proof. Item 1. is clear from the definition. Item 2. holds because of the compatibility of
e and p with isometries given in Equation (3) and Proposition 7.9. Item 3. holds because
e is an isometry and p is 1–Lipschitz.

7.12 Isoperimetry. One can use barycentric spans to efficiently fill cycles in X, which
shows that any group G acting properly coboundedly on X has at most Euclidean kth-
order isoperimetric functions, i.e. Opn

k`1
k q, for all k. In particular, G has at most quadratic

Dehn function and is of type F8. As we shall see in Section 7.3, injective spaces have con-
ical bicombings, and this also implies the bounds on the higher Dehn functions [ECH`92,
Thm 10.2.1] (also see [BD19]). A more explicit Dehn function is given using conical bi-
combings in [Cre20].

We illustrate the procedure by sketching a proof of the following lemma, which implies
the statement about quadratic Dehn function.

7.13 Lemma. Suppose that x̃ “ px0, . . . , xn´1, xn “ x0q P X
n satisfies dpxi´1, xiq ď r for

all i. There is a triangulation of the disc D with vertex set V and at most p2n´ 1qpn´ 2q
2–cells such that there is a map f : V Ñ X that sends the boundary cycle of D to x̃ and
has the property that dpfpv1q, fpv2qq ď 2r whenever v1, v2 P V are adjacent.

Sketch proof. Let ∇ be the affine simplex in EpXq spanned by dx0 , . . . , dxn´1 . Let D be
the disc formed from the union of the 2–cells px0, xi, xi`1q Ă ∇, of which there are n´ 2.
Each of these affine 2–cells can be subdivided into 2n ´ 1 smaller 2–cells whose vertices
are pairwise 2r–close, which gives V . The map f “ e´1p|V is 1–Lipschitz.
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7.3 Bicombings

The notions of combings and bicombings originated in the idea of considering only metric
aspects from the theory of automaticity [ECH`92, Alo92, Sho90]. Since bicombings were
introduced, their scope has expanded considerably [AB95, DL15, EW17].

7.14 Definition (Bicombing). A bicombing γ on a metric space X is a choice of constant-
speed geodesic γx,y : r0, 1s Ñ X from x to y for each pair px, yq P X2.

We now list a few additional properties that a bicombing may have.

7.15 Definition. A bicombing γ on a metric space pX, dq is
• reversible if γx,y “ γy,x for all x, y P X;
• G–equivariant if gγx,y “ γgx,gy for all x, y P X, g P G, where G ă IsomX;
• consistent if γz,w Ă γx,y whenever z, w P γx,y;
• conical if for every x, x1, y, y1 P X and every t P r0, 1s we have

dpγx,yptq, γx1,y1ptqq ď p1´ tq dpx, x1q ` t dpy, y1q.

If a bicombing is consistent and conical, then the map t ÞÑ dpγx,yptq, γx1,y1ptqq is convex
for all x, x1, y, y1, as is the case for the unique geodesics in a CAT(0) space [Bal95, Prop. 5.4].

Let us now specialise barycentric spans by considering them for a pair of points. In this
case ∆px,yq is a path for each x, y P X. Let γx,y : t ÞÑ ∆px,yqpp1´ t, tqq. As the 1–Lipschitz
image of the affine geodesic rdx, dys Ă EpXq, which has length dpx, yq, the path γx,y is a
geodesic.

We therefore have a bicombing on injective spaces X; this bicombing was first described
in [Lan13, Prop. 3.8]. The following is immediate from Proposition 7.11.

7.16 Lemma. The above bicombing γ is reversible, equivariant, and conical.

7.17 Remark. It follows from the existence of γ that injective spaces are contractible,
but this can be more simply seen from an alternative characterisation of injectivity [Isb64,
Thm 1.1].

7.18 Inconsistency. It turns out that γ can fail to be consistent. For example, let X
be the injective hull of the five points a “ p0, 4q, b “ p1, 3q, p3, 5q, p4, 0q, and c “ p6, 2q
in pR2, d8q; this is depicted in Figure 7. One can easily compute that γb,c is the affine
geodesic, which passes through p2, 14

5 q, whereas γa,cp
1
3q “ p2,

8
3q.

Rescaled copies of this example can be embedded in the Cayley complex of Z2 ˚Z (also
known as the tree of flats) where the flats are given the `8–metric. This shows that, for
this space, the bicombing γ is not even at a bounded distance from being consistent, even
though the space has a proper cocompact group action.

a “ p0, 4q

b “ p1, 3q

p3, 5q

p4, 0q

p6, 2q “ c

Figure 7: An injective subspace of pR2, d8
q where the bicombing γ is not consistent.
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7.19 Remark. Although the bicombing γ can fail to be consistent, Descombes–Lang
showed that every proper injective space possesses a unique reversible, consistent, conical
bicombing [DL15, Thms 1.1, 1.2]. Unfortunately, it does not seem to be a simple matter
to determine whether the injective hull of a given metric space is proper. For example,
the three metric spaces X0 “ pR

n, d8q, X1 “ pR
n, d1q, and X2 “ pR

n, d2q are pairwise
bilipschitz, but X0 is injective, EpX1q “ pR2n´1

, d8q [Her92], and EpX2q has infinite
topological dimension.

In a similar vein, note that Lemma 7.7 is most naturally a metric statement, rather than
a topological one, as a cocompact action on a coarsely injective space will not give rise to a
cocompact action on the injective hull when that hull is not proper. It would therefore be
desirable to have a theory of groups acting properly coboundedly on non-proper injective
spaces, especially in view of Corollary 6.22.

7.4 Barycentres

Here we specialise the barycentric span in another way to obtain a barycentre map on the
injective space X.

7.20 Definition (Barycentre). Given x̃ “ px1, . . . , xnq P X
n, the barycentre is defined to

be bx̃ “ bpx1, . . . , xnq “ ∆x̃p
1
n , . . . ,

1
nq P X.

The following is immediate from Proposition 7.11.

7.21 Lemma. Barycentres are invariant under permutations of their defining points. If
φ P IsomX, then φbpx1, . . . , xnq “ bpφx1, . . . , φxnq. The barycentre map is Lipschitz in its
coordinates, in that dpbpx1, . . . , xnq, bpy1, . . . , ynqq ď

1
n

ř

dpxi, yiq.

7.22. Es-Sahib–Heinich [ESH99] introduced a barycentre map for Busemann spaces, which
was then reviewed and partially improved by Navas [Nav13]. It was later observed by
Descombes [Des16] that the construction works equally well for complete metric spaces
with reversible conical bicombings; this includes all injective spaces. However, since the
most natural construction of such a bicombing on an injective space is via taking the
barycentric span of two points, that route to a barycentre is somewhat circuitous.

Moreover, it was shown by Basso [Bas20] that if Y is a metric space with a reversible
conical bicombing γ, then there is a conical bicombing on EpY q whose restriction to Y
is γ.

Recall that the translation length of φ P IsomY is |φ| “ inftdpy, φyq : y P Y u, and
Minφ “ ty P Y : dpy, φyq “ |φ|u. We say φ is hyperbolic if |φ| ą 0 and Minφ ‰ ∅. The
next couple of lemmas should be compared to [Des15, §7].

7.23 Lemma. If φ is a hyperbolic isometry of X, then Minφ is closed under taking barycen-
tric spans, and φ has a geodesic axis.

Proof. The closure is immediate from Proposition 7.11. This shows that if x P Minφ, then
the bicombing geodesic γx,φx is contained in Minφ. The concatenation

Ť

nPZ φ
nγx,φx is a

geodesic axis for φ.

7.24 Lemma. If φ P IsomX and some φn is hyperbolic, then φ is hyperbolic.

Proof. Fix x P Minφn, and let x̃ “ px, φx, . . . , φn´1xq. Since φ and φn commute, every
φkx lies in Minφn, so Lemma 7.23 tells us that bx̃ P Minφn. By the triangle inequality,
dpbx̃, φbx̃q ě

1
n |φ

n|. On the other hand, Proposition 7.11 shows that

dpbx̃, φbx̃q “ dpbpx, φx, . . . , φn´1xq, bpφnx, φx, . . . , φn´1xqq ď
1

n
dpx, φnxq “

1

n
|φn|.
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Thus φ is hyperbolic and bx̃ P Minφ.

7.25 Remark. A similar argument shows that |φ| “ lim 1
n dpx, φ

nxq for all x P X.

In [KMV21, §5], Keppeler–Möller–Varghese use the statement of Lemma 7.24 to show
that Q cannot be a subgroup of any group that acts properly cocompactly on an injective
space.

7.26 Lemma. If F is a finite subgroup of IsomX, then F has a fixed point.

Proof. Write F “ t1, f2, . . . , fnu and let x P X. The barycentre bpx, f2x, . . . , fnxq is fixed
by F because of Lemma 7.21.

A stronger version of Lemma 7.26 was proved by Lang [Lan13, Prop. 1.2]. Either form
has a standard consequence [BH99, Prop. I.8.5].

7.27 Corollary. If G acts properly coboundedly on an injective space X, then G has finitely
many conjugacy classes of finite subgroups.

Proof. Let x P X and let r be such that G ¨ x is r–dense in X. If F is a finite subgroup
of G, then F fixes some point z P X by Lemma 7.26, so F fixes the ball Bpz, rq, which
contains a point of G ¨x. Thus some conjugate of F fixes a point in Bpx, rq, so we are done
by properness of the action.

7.5 Groups acting on injective spaces

Let us summarise the results of this section in the presence of a proper cobounded group
action.

7.28 Theorem. Suppose that a group G acts properly coboundedly on an injective space X.
• G has at most Euclidean kth-order isoperimetric functions for all k.
• X has a reversible, conical, G–equivariant bicombing.
• X has a permutation-invariant, G–equivariant barycentre map that is Lipschitz in its
coordinates.

• Q is not a subgroup of G [KMV21, Prop. 5.3].
• G has finitely many conjugacy classes of finite subgroups.
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8 Conclusions

In this final section, we pull together the results of the previous sections to obtain facts
about colourable HHGs.

8.1 Theorem. If G is a colourable HHG, then G acts properly coboundedly on the coarsely
injective space pG, σq, where σ is as defined in Section 6.1.

Proof. G is a coarse median space by Proposition 3.7, and, as noted in Remark 3.15, the
median can be chosen so that G acts on itself by median-preserving isometries. Also, G
is locally finite, roughly geodesic, and, according to Theorem 4.20, it is quasicubical. By
Corollary 6.22, G acts properly coboundedly on the coarsely injective space pG, σq.

8.2 Corollary. Let G be a colourable HHG.
• G has at most Euclidean kth-order isoperimetric functions for all k, so is of type F8.
• G is semihyperbolic (Definition 8.4). In particular,

– G has soluble conjugacy problem.
– All polycyclic subgroups of G are virtually abelian.
– All finitely generated abelian subgroups of G are undistorted.

• For any ring R we have cohomdimRpGq ď 1` asdimG.
• G has a contracting barycentre map in the sense of [DMS20, Def. 6.2].
• Q is not a subgroup of G.
• G has finitely many conjugacy classes of finite subgroups.

Proof. According to Theorem 8.1, G acts properly coboundedly on the coarsely injective
space pG, σq, hence on the injective space EpG, σq by Lemma 7.7. The consequences follow
from Theorem 7.28, as we now describe.

Semihyperbolicity holds because the bicombing in Theorem 7.28 is bounded in the sense
of [AB95] (see Definition 8.4. The bicombing is also coherent and expanding in the sense
of [EW17], so the bound on cohomological dimension is given by [EW17, Thm C]. The fact
that Q is not a subgroup is [KMV21, Prop. 5.3].

The class of colourable HHGs is a proper subclass of the class of groups admitting
a proper cobounded action on an injective space. Indeed, non-colourable HHGs such as
the one described in [Hag21] also admit such actions [HHP20], and there are also uni-
form lattices that act properly coboundedly on injective spaces but are not hierarchically
hyperbolic [CCHO20, CCG`20, Hae20].

The remainder of the section consists of a discussion of the consequences in Corol-
lary 8.2.

8.3 F8. Recall that all HHGs are coarse median spaces of finite rank. A nice argument of
Bowditch shows that such groups have at most quadratic Dehn function [Bow13, Prop. 8.2].
Also, their asymptotic cones are bilipschitz to median metric spaces [Bow13, §9], and
hence are bilipschitz both to injective spaces [Bow20b] and to CAT(0) spaces [Bow16b].
In particular, the asymptotic cones of any HHG are contractible [BHS19], so such groups
are of type F8 by a theorem of Riley [Ril03, Thm D].

Semihyperbolicity was introduced by Alonso–Bridson [AB95] in response to a call by
Gromov for a weakened version of hyperbolicity [Gro87] and as part of the exploration of
automaticity-related properties.
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8.4 Definition (Semihyperbolic). A bounded quasigeodesic bicombing β on a metric space
X is a choice of uniform quasigeodesic βx,y from x to y for each pair px, yq P X2 such that
there is a constant k for which

dpβx,yptq, βx1,y1ptqq ď kmaxtdpx, x1q, dpy, y1qu ` k

for all x, x1, y, y1 P X. A group G is semihyperbolic if there is a space X with a bounded
quasigeodesic bicombing β and a proper cobounded G–action such that gβx,y “ βgx,gy for
all g P G and all x, y P X [AB95, Thm 4.1].

The following is a special case of Corollary 8.2. It was deduced in this way in [HHP20],
and simultaneously proved by Durham–Minsky–Sisto using very different methods [DMS20]
(but again as a special case of a more general result; see Section 1.4).

8.5 Theorem. Mapping class groups are semihyperbolic.

This complements Mosher’s theorem that mapping class groups are automatic [Mos95],
as these are the two components of biautomaticity, which requires knowing that the bi-
combing provided by a generating set witnessing automaticity is itself bounded and equiv-
ariant.A proof of biautomaticity of mapping class groups appears in unpublished work of
Hamenstädt [Ham09]. On the other hand, recent examples of Hughes–Valiunas show that
not all colourable HHGs are biautomatic [HV22].

8.6 Conjugacy problem. The result about the conjugacy problem extends work of
Abbott–Behrstock showing that it can be solved in exponential time for Morse elements
of HHGs [AB18], and generalises the fact that it can always be solved in exponential time
in mapping class groups [MM00, Tao13, BD14].

8.7 Other consequences. The result about polycyclic subgroups of HHGs can also be
deduced from the Tits alternative for HHGs [DHS17, DHS20]. Undistortion of finitely
generated abelian subgroups of HHGs was also proved by Plummer1. A barycentre with
similar properties is produced for colourable HHGs in [DMS20]; it has the added benefit
of equivariance, and it always lies in the median–quasiconvex hull. The fact that mapping
class groups have finitely many conjugacy classes of finite subgroups is also known as a
consequence of Kerckhoff’s solution of the Nielsen realisation problem [Ker83, Bri00].

1Private communication.
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